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Motivation



Outline
• Introduction to (virtual) adversarial training 

• Virtual adversarial training for text classification 

• Experimental Setup 

• Results (and some analysis) 

• Conclusions
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Adversarial Examples

That’s problematic. How can we solve it?



Adversarial Training for NN’s
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Adversarial Training for NN’s

• The general addition to the cost function for 
adversarial training: 

• In practice, take a change depending on the 
gradient :



Virtual Adversarial Training

• Extends adversarial training to the semi-supervised 
regime 

• The key idea - make the output distribution for an 
original and perturbrated example close to each 
other  

• Enables the use of large amounts of unlabeled data
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Virtual Adversarial Training for NN’s

• The general addition to the cost function for virtual 
adversarial training: 

• Again, in practice, there is an efficient way to 
approximate this (as detailed in Miyato et. al., 2016)



Model - Adversarial Training for Text Classification

• Adversarial perturbations typically consist of 
making small modifications to very many real-
valued inputs (i.e. pixels in the previous examples) 

• For text classification, the input is discrete, and 
usually represented as a series of high-dimensional 
one-hot vectors (where such small modifications 
are impossible).  

• Solution: define the perturbation on continuous 
word embeddings instead of discrete word inputs. 



Model - Adversarial Training for Text Classification

• The perturbation is introduced to normalized embeddings 
to avoid the network from learning to ignore them:



• As we model the input text as: 

• The perturbation is defined as: 

•  And the addition to the loss function is:

Adversarial Training for Text Classification

=



Virtual Adversarial Training for Text Classification

• Here, the perturbation is defined as: 

• And the addition to the loss function is then:



Experimental Settings
• 5 datasets: 

• Sentiment classification (binary): IMDB, Rotten Tomatoes, Elec 

• Topic classification (multiclass): DBpedia, RCV1



• Treat punctuation as spaces 

• Convert words to lower case 

• Remove words which appear in only one document 

• RCV1 - remove stop words

Experimental Settings - Preprocessing



Pre-Training Tricks and Hyperparams

• Initialize word embeddings and LSTM weights with 
RNNLM on labeled and unlabeled examples 

• Single layer LSTM, 1024 units (512 for BiLSTM) 

• Embedding size: 256(IMDB, BiLSTM)/512(Rest) 

• Sampled softmax loss with 1024 candidate samples (?) 

• Adam optimization, 256 samples per batch 

• 0.5 dropout rate on the word embeddings



Classification Model Tricks and Hyperparams

• 1 Hidden layer before softmax, 30(IMDB, Elec, Rotten)/128(Rest) 
units 

• ReLU activation function 

• batch size - 64(IMDB, Elec, RCV1)/128(Rest) 

• 10k-20k training steps for each model 

• Truncated back propagation - stop back propagating after 400 
steps 

• Generate perturbation after dropout 

• Optimize epsilon, dropout rate on validation set



Results - IMDB
• Adversarial and virtual adversarial training show lower 

negative log-likelihood 

• Virtual adversarial training also improves the adversarial 
training loss



Results - IMDB



Embedding-Based Analysis



Results - Topic classifiction: Elec, RCV1

• Improved SOTA on Elec, RCV1, without using CNN’s



Results - Sentiment analysis: Rotten Tomatoes

• Adversarial+Virtual adv. performs equally to SOTA 

• Virtual adversarial is weaker than baseline - could be due to 
small amount of supervised examples, short sentences



Results - DBpedia
• Baseline itself improves over SOTA, virtual 

adversarial performs best



Related Work

• Dropout/Random Noise 

• Generative Models 

• Pre-Training as semi-supervised learning



Conclusion

• Adversarial and virtual adversarial training provides 
good regularization performance for text 
classification with RNN’s 

• Provides SOTA results or on-par results for the 
examined datasets 

• “Improved Quality” of word embeddings


