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# of mentions in paper titles at top-tier NLP conferences (ACL, EMNLP) from 2012 to 2018:
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A basic machine learning setup

+ Given a dataset of: (x{™),y(™), _, vy training examples,
- input: x(m ¢ RY
- output: y'™ ={0,1}

+ Learn a function f : x — y to predict correctly on new inputs.
+ step |: pick a learning algorithm (SVM, log. reg., NN...)

- step Il: optimize it w.r.t a loss, i.e: min, 30 (fu(x!™) — y™)?
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Logistic Regression - The “Single Layer” Neural Network

- Model the classifier as: f(x) = a(wT . T) = O(Z W; ;)

- Learn the weight vector w € R* using gradient-descent (next slide)

. 0(z) = === is a non-linearity, e.g. the sigmoid function (creates
dependency between the features, maps f(x) to [0,1]):

-

0.5
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Training (Logistic Regression) with Gradient Descent

» Define the loss-function (squared error, cross entropy...):
Loss(w) = 1 57 (a(wTx(m) — y(m))2
+ Compute the gradient of the loss-function w.r.t. the weight vector, w:
VwlLoss =" [a(wTx{M) — y(m)] g/ (wT x(m))x{m)
» Perform gradient-descent:
- Start with a random weight vector
- Repeat until convergence: w < w —y(V, Loss)

- Y is the learning rate, which is a hyper-parameter
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Instead of deriving the loss on all training

examples per iteration, use only a sub-set
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Stochastic Gradient Descent (SGD)

Instead of deriving the loss on all training %

Stochastic Gradient N ag
examples per iteration, use only a sub-set  pescent(s60) 7" T
of (random) examples per iteration (“mini- |

batch”):

[
! T
i '
@ '
J

Gradient Descent

W W — v(ﬁ D meB Error(™) x ¢’ (in{™) % x(m))

Faster to converge (more updates per
epoch), but more noisy
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Multi Layer Perceptron (MLP) - a “Deep"” NN

- Model the classifier as:

f(x) =0(Q_;wj-hj) =0c(2_;w-o();wixi)) @
. . . *
- Can be seen as multilayer logistic W) w /w | w
regression high level"
hj @ features
- a.k.a “Feed-Forward NN” Ny <

v/ ORI
+ The inputs to the final classifier are 9/6 ‘a\g
learned (“representation learning”
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Training an MLP with Back-Propagation

+ Assume k=2 outputs per input:
+ Define the loss-function per example:
Loss = 3, L [o(ink) — yi]°

- Compute the gradient w.r.t. the last layer:

OLoss
Owiji

— 5khj where (5/( — [a(ink) — yk] (Tl(l'nk)
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Training an MLP with Back-Propagation

+ Assume k=2 outputs per input:

+ Define the loss-function per example: Vi

Loss = >, L [o(ink) — yi]? Wik

- Compute the gradient w.r.t. the last layer: h;

s = by where b = [o(in) — il (i)

+ Compute the gradient w.r.t. the first layer: i
O Loss
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Training an MLP with Back-Propagation

+ Assume k=2 outputs per input:

+ Define the loss-function per example: Vi
Loss = 3", L [o(ink) — yil? Wi

- Compute the gradient w.r.t. the last layer: hj
%ngis = {xh; where 0, = [o(ink) — yi| o’ (ing) Wij

+ Compute the gradient w.r.t. the first layer:

OLoss

ow;, = 0jxi where 0; = [, dxwi] o (inj)

- Update the weights: w < w —~(V,Loss)
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Why Deeper is Better?

* A deeper architecture is more expressive than a shallow one given same number of nodes (Bishop, 1995)
* 1-layer nets (log. regression) can only model linear hyperplanes
e 2-layer nets can model any continuous function (given sufficient parameters)

e >3-layer nets can do so with fewer parameters
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Recurrent Neural Networks (RNNSs)

* Enable variable length inputs (sequences)
* Modelling internal structure in the input or output

* Introduce a “memory/context” component to utilize history

000000000
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The Softmax Function and Negative Log Likelihood

 Enables to output a probability distribution over k possible classes (words, in our case)

- Y7 (the value of the network output vector in position i) is expected to hold the log-likelihood (probability) of
a specific class (in our case, word):

( T — Z) _ aardvark Bernanke Rosenthal Yellen zebra
P o -k ' ‘ ‘ \ ,
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The Softmax Function and Negative Log Likelihood

 Enables to output a probability distribution over k possible classes (words, in our case)

Y4 (the value of the network output vector in position i) is expected to hold the log-likelihood (probability) of
a specific class (in our case, word):

( T — Z) _ aardvark Bernanke Rosenthal Yellen zebra
p k + } " 4 +

Y ; | : H l
jzz:le ndi-n_onlla I [ I I e I A = I

- The loss function is usually the sum of negative log softmax values for the correct sequence

Graph for -log(x)

x: 1.22124468  y: -0.086802685

| 13

wrong prediction -
large loss

perfect prediction -
zero loss
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Training (RNN's) with Backpropagation Through Time

+ As usual, define a loss function (per sample, through time ¢=1,2,...,71"):
T
Loss = J(O©,x) = — ) J(O, )
t=1

+ Compute the gradient w.r.t. parameters O, starting at ¢t = 1

— 9J¢
VO = 53
+ Backpropagate through time - sum and repeatfor ¢ — 1 ,until{ = 1:
__ 0Jy
- Eventually, update the weights: ?t ?T/l 1‘sz yTt—l -'?t
@ — W/V('_) ”””””” ht — hl > h2 > s = 2 — ht_1—> ht >
"""" T T T T T
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Vanishing Gradients in Vanilla RNNSs

+ If we dive deeper into the gradients of the RNN loss function, for example:

OJt4n __ OJt4n  Og Oh+tt N Oh¢41
8ht 89 aht_|_N 8ht_|_N_1 8ht

- Given h; = tanh(a),a =W,, , + Uh;_1,+b we get that:

Oht41 — T Otanh(a)

8ht oa
+ And Eventually:
OJi4n _ OJiyn T Otanh(atyy)
dh, —  dg 8ht+N 1:[ U” diag ( Datin

+ This easily makes the gradients vanish (get close to 0) so that no learning takes place,
as noted in Bengio et al (94"):

aat—|—’n,

N
H UTdZClg (8tanh(at+n)> 0

n=1
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Vanishing gradients, LSTM's and GRU's

* In order to cope with the vanishing gradients problem T\
in RNN’s, more complex recurrent architectures (
emerged: > —>
* Long Short-Term Memory (Hochreiter & A
Schmidhuber,1999) +ﬁ )"

+ Gated Recurrent Unit (Cho et al, 2014)

* These architectures introduce additive terms that relax
the vanishing gradient problem Figures by Chris Olah

- Most of the recent RNN works utilize such architectures


https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM Walkthrough in 4 Steps

Processes a variable length input sequence: x = (x1,x2,-+ ,X) I }t g
ommeman |1 = W Ry, ]
At any time step, holds a memory cell ¢; and a output gates and !
hidden state /; used for predicting an output wise | Ct | | tanh |
compute current ) ~
Has gates controlling the extent to which: "%i{i%i%;d ¢ =fiOc-1+i O

New content should be consumed (input gate)
Old content should be erased (forget gate)
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LSTM Walkthrough in 4 Steps

Processes a variable length input sequence: x = (x1,x2, -+ ,Xn) | }t g

. g, forget, Ot — G W [hl‘ —1, Xt ]
At any time step, holds a memory cell ¢y and a output gates and !
hidden state /1; used for predicting an output uwdate Lt ] _tanh_

compute current

memory cell II Ct — ﬁ @ Ct_l _|_ it @ 6t

Has gates controlling the extent to which: using input and

forget gates

compute current

New content should be consumed (input gate) M ht — o, o tanh(c,) hidden state

using output gate
and memory cell

Old content should be erased (forget gate)

p(xXr41 =wlx1,- -+ ,x;) = exp(u(w,ly))/Z
IV compute current

Current content should be exposed (output
p ( p Z — ZW,EV exp(u(w,,ht)) output probabilities

gate). More formally: for prediction by
hidden state
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The GRU Architecture

- “Gated Recurrent Unit” Cho et al. (2014)

,l,

2zt = o (W, - |hy_1, x4|)update gate

'y — O (”v,- . [111_1..1';])reset gate

tanh] | candidate iz, = tanh (W - [1', X /1,_1..1',])

) output ]I{ — (1 - 31) X lI{_l + 24 X iI{
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The GRU Architecture

- “Gated Recurrent Unit” Cho et al. (2014)

- Also widely used, simpler than the LSTM

II,

2zt = o (W, - |hy_1, x¢|) update gate

ry = o (W, - |hy_1,x,|)reset gate

o o tanh | | candidate }I{ — tanh (”v ' [I'{ X hl—l- .I'/])

) output /I; — (1 - :f) X /11_1 + 24 X iI{




The GRU Architecture

+ "Gated Recurrent Unit” Cho et al. (2014)
- Also widely used, simpler than the LSTM ) i

+ But weaker in “counting” tasks (Weiss and Goldberg, 2018)

-
{ - L
- ™ O

hi (b) a™b" (?‘-LSTM o a‘l().[)bl[)().clt)()
b 2 =0 (U': : []1,_1.;1';])update gate . =
Q—c | [~ A
A ry = O (H'r : [[,,_l.,l-,])reset gate &,’
o o) tanh | | candidate }I{ — tanh (” y [’I'{ X h{—l- .I'{]) \ alﬁ
) output ,I{ - (1 — 31) X 11{_1 + 2t ¥ ll{ 5 B = = =

T (d) a™b*e"-GRU on al()(]bl()(lcl()()
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Summary

Neural networks can learn rich features representations
Trained using end-to-end optimization (e.g. SGD)

Main components: weight matrices, activation functions
Deeper networks are more expressive

Use RNNs to model variable length sequences

Vanishing gradients, LSTMs and GRUS
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