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The problems of statistical MT
• Lots of moving parts (language model, 

alignment model, phrase table 
construction, distortion model, reordering 
models, tuning…)

• Requires extensive feature engineering

• Hard and expensive to capture long-range 
dependencies

• Does not generalize for similar words
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A New Paradigm?
# of mentions in paper titles at top-tier NLP conferences (ACL, EMNLP) from 2012 to 2018: 
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A basic machine learning setup
• Given a dataset of:                                  training examples,

• input: 

• output: 

• Learn a function                  to predict correctly on new inputs.

• step I: pick a learning algorithm (SVM, log. reg., NN…)

• step II: optimize it w.r.t a loss, i.e:    
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• Model the classifier as:

• Learn the weight vector               using gradient-descent (next slide)  

•                         is a non-linearity, e.g. the sigmoid function (creates 
dependency between the features, maps         to [0,1]):

Logistic Regression - The “Single Layer” Neural Network

�(z) = 1
1+e�z

f(x) = �(wT · x) = �(
X

i

wixi)

w 2 Rd

f(x)
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Training (Logistic Regression) with Gradient Descent

• Define the loss-function (squared error, cross entropy…):

• Compute the gradient of the loss-function w.r.t. the weight vector, w:

• Perform gradient-descent:

• Start with a random weight vector

• Repeat until convergence: 

•       is the learning rate, which is a hyper-parameter�
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Stochastic Gradient Descent (SGD)

Instead of deriving the loss on all training 
examples per iteration, use only a sub-set 
of (random) examples per iteration (“mini-
batch”):

Faster to converge (more updates per 
epoch), but more noisy
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Multi Layer Perceptron (MLP) - a “Deep" NN

• Model the classifier as: 

• Can be seen as multilayer logistic 
regression

• a.k.a “Feed-Forward NN”

• The inputs to the final classifier are 
learned (“representation learning”)

“high level” 
features
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Training an MLP with Back-Propagation
• Assume k=2 outputs per input: 

• Define the loss-function per example:

• Compute the gradient w.r.t. the last layer:

• Compute the gradient w.r.t. the first layer: 

• Update the weights: 
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Why Deeper is Better?
• A deeper architecture is more expressive than a shallow one given same number of nodes (Bishop, 1995)

• 1-layer nets (log. regression) can only model linear hyperplanes
• 2-layer nets can model any continuous function (given sufficient parameters)
• >3-layer nets can do so with fewer parameters

Example - “learning to XOR”:
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Recurrent Neural Networks (RNNs)

• Enable variable length inputs (sequences)

• Modelling internal structure in the input or output

• Introduce a “memory/context” component to utilize history
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The Softmax Function and Negative Log Likelihood
• Enables to output a probability distribution over k possible classes (words, in our case)

•         (the value of the network output vector in position i) is expected to hold the log-likelihood (probability) of 
a specific class (in our case, word):

• The loss function is usually the sum of negative log softmax values for the correct sequence

p(x = i) = eyi
kP

j=1
eyj

wrong prediction -
large loss

perfect prediction -
zero loss
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Training (RNN’s) with Backpropagation Through Time 
• As usual, define a loss function (per sample, through time                          ): 

• Compute the gradient w.r.t. parameters    , starting at            : 

• Backpropagate through time - sum and repeat for            , until           : 

• Eventually, update the weights: 

r⇥ = �Jt
�⇥ t = T

t = 1, 2, ..., T

t = 1t� 1

⇥ = �r⇥

Loss = J(⇥, x) = �
TP

t=1
Jt(⇥, xt)

r⇥ = @Jt
@⇥

r⇥ = r⇥+ @Jt
@⇥
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Vanishing Gradients in Vanilla RNNs
• If we dive deeper into the gradients of the RNN loss function, for example: 

• Given                                                     ,       we get that: 

• And Eventually: 

• This easily makes the gradients vanish (get close to 0) so that no learning takes place, 
as noted in Bengio et al (94’):

@Jt+n

@ht
= @Jt+n

@g
@g

@ht+N

@ht+N

@ht+N�1
...@ht+1

@ht

ht = tanh(a), a = Wxt�1 + Uht�1 + b

@ht+1

@ht
= UT @tanh(a)

@a

@Jt+n

@ht
= @Jt+n

@g
@g

@ht+N

NQ
n=1

UT diag
⇣

@tanh(at+n)
@at+n

⌘

NQ
n=1

UT diag
⇣

@tanh(at+n)
@at+n

⌘
! 0
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Vanishing gradients, LSTM’s and GRU’s

• In order to cope with the vanishing gradients problem 
in RNN’s, more complex recurrent architectures 
emerged: 

• Long Short-Term Memory (Hochreiter & 
Schmidhuber,1999) 

• Gated Recurrent Unit (Cho et al, 2014) 

• These architectures introduce additive terms that relax 
the vanishing gradient problem 

• Most of the recent RNN works utilize such architectures

Figures by Chris Olah

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM Walkthrough in 4 Steps
• Processes a variable length input sequence: 

• At any time step, holds a memory cell       and a 
hidden state      used for predicting an output  

• Has gates controlling the extent to which: 

• New content should be consumed (input gate)

• Old content should be erased (forget gate)

• Current content should be exposed (output 
gate). More formally:

Ⅰ 
compute current 

input, forget, 
output gates and 

memory cell 
update

Ⅱ
compute current  

memory cell 
using input and 
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Ⅲ
compute current  

hidden state 
using output gate 
and memory cell

Ⅳ compute current  
output probabilities 

for prediction by 
using softmax over the 

hidden state
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ht

Ⅲ
compute current  

hidden state 
using output gate 
and memory cell

inputforget outputmemory

ft ĉt otit

Ⅰ 
compute current 

input, forget, 
output, memory 

gate values

ht-1

ct-1

Ⅱ

ft⊙ct-1

it⊙ĉt
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compute current  
memory cell 

using input and 
forget gates
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Ⅳ compute current  
output probabilities 

for prediction by 
using softmax over the 

hidden state

ht

Ⅲ
compute current  

hidden state 
using output gate 
and memory cell

inputforget outputmemory
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Ⅰ 
compute current 

input, forget, 
output, memory 

gate values

ht-1

ct-1

Ⅱ

ft⊙ct-1

it⊙ĉt

ct

compute current  
memory cell 

using input and 
forget gates
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The GRU Architecture
• “Gated Recurrent Unit” Cho et al. (2014)

• Also widely used, simpler than the LSTM

• But weaker in “counting” tasks (Weiss and Goldberg, 2018)
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Summary
• Neural networks can learn rich features representations

• Trained using end-to-end optimization (e.g. SGD)

• Main components: weight matrices, activation functions

• Deeper networks are more expressive

• Use RNNs to model variable length sequences

• Vanishing gradients, LSTMs and GRUs




