89688: Statistical Machine Translation

Neural Machine Translation

May 2020
Roee Aharoni
Computer Science Department

Bar llan University

Based in part on slides by Kevin Duh and Hermann Ney from the DL4MT winter school

http://dl4mt.computing.dcu.ie/#/home

RRRRRRRRRRR

The problems of statistical MT

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The problems of statistical MT

o |Lots of moving parts (language model,
alignment model, phrase table
construction, distortion model, reordering

models, tuning...)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The problems of statistical MT

Source Language Text

#

Preprocessing Models
o Lots of moving parts (language model|, (r) P
alignment model, phrase table " GlobalSearch [<—{ Phrase Models)

E = argznaX{P(E |F)} Word Models j

construction, distortion model, reordering
models, tuning...)

= argmax{)i Amh-m(l;’ F)}
E m

. A

'E

(Postprocessing)

Reordering Models)

)

/1

Target Language Text

STATISTICAL MACHINE TRANSLATION

2020

ROEE AHARONI

The problems of statistical MT

o |Lots of moving parts (language model,
alignment model, phrase table
construction, distortion model, reordering
models, tuning...)

e Requires extensive feature engineering

Source Language Text

#

(Preprocessing)

*F

s

.

Global Search
E = argznaX{p(ElF)}

= argmax{)i Amh-m(l;’ F)}
E m

L

Models

Language Models j

I

Phrase Models)

Word Models

A

'E

(Postprocessing)

Target Language Text

Reordering Models)

/1

)

STATISTICAL MACHINE TRANSLATION

2020

ROEE AHARONI

The problems of statistical MT

o |Lots of moving parts (language model,
alignment model, phrase table
construction, distortion model, reordering
models, tuning...)

e Requires extensive feature engineering

Source Language Text

#

(Preprocessing)

+ F
Global Search

E = argmax{p(E|F)}

Models

Language Models j

Phrase Models)

Word Models

— argmax{éi A'm.h"m.('l;’ F)}

E m
< N
'E

(Postprocessing)

Reordering Models)

)

AT

Target Language Text

A Smorgasbord of Features for Statistical Machine Translation

Franz Josef Och Daniel Gildea Sanjeev Khudanpur Anoop Sarkar
USC/ISI U. of Rochester Johns Hopkins U. Simon Fraser U.
Kenji Yamada Alex Fraser Shankar Kumar Libin Shen David Smith
Xerox/XRCE USC/ISI Johns Hopkins U. U. of Pennsylvania Johns Hopkins U.
Katherine Eng Viren Jain Zhen Jin Dragomir Radev
Stanford U. U. of Pennsylvania Mt. Holyoke U. of Michigan

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The problems of statistical MT

Source Language Text

#

Preprocessing Models
o Lots of moving parts (language model|, (I) P
alignment model, phrase table " GlobalSearch [<—{ Phrase Models)
construction, distortion model, reordering e e Word Models)
. X = arggax{i Amhm(E, F)} J<—(Reordering Models)
models, tuning...) s ‘\(;
(Postprocessing) L)

e Requires extensive feature engineering

Target Language Text

11,001 New Features for Statistical Machine Translation®

David Chiang and Kevin Knight Wei Wang
USC Information Sciences Institute Language Weaver, Inc.
4676 Admiralty Way, Suite 1001 4640 Admiralty Way, Suite 1210

Marina del Rey, CA 90292 USA Marina del Rey, CA 90292 USA

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The problems of statistical MT

Source Language Text

#

Preprocessing Models
o Lots of moving parts (language model|, (I) P
alignment model, phrase table " GlobalSearch [<—{ Phrase Models)
construction, distortion model, reordering e e Word Models)
. X = arggax{i Amhm(E, F)} J<—(Reordering Models)
models, tuning...) s ‘\(;
(Postprocessing) ..)

e Requires extensive feature engineering

Target Language Text

e Hard and expensive to capture long-range
dependencies

11,001 New Features for Statistical Machine Translation®

David Chiang and Kevin Knight Wei Wang
USC Information Sciences Institute Language Weaver, Inc.
4676 Admiralty Way, Suite 1001 4640 Admiralty Way, Suite 1210

Marina del Rey, CA 90292 USA Marina del Rey, CA 90292 USA

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The problems of statistical MT

Source Language Text

#

Preprocessing Models
o Lots of moving parts (language model|, (I) P
alignment model, phrase table " GlobalSearch [<—{ Phrase Models)
construction, distortion model, reordering e e Word Models)
. X = arggax{i Amhm(E, F)} J<—(Reordering Models)
models, tuning...) s ‘\(;
(Postprocessing) ..)

e Requires extensive feature engineering

Target Language Text

e Hard and expensive to capture long-range

| 11,001 New Features for Statistical Machine Translation®
dependencies

: . David Chiang and Kevin Knight Wei Wang
°
Does not genera l 1ZE for SIMI la WO rdS USC Information Sciences Institute Language Weaver, Inc.
4676 Admiralty Way, Suite 1001 4640 Admiralty Way, Suite 1210

Marina del Rey, CA 90292 USA Marina del Rey, CA 90292 USA

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A New Paradigm?

'Deep’ "Neural" "Deep’ "Neural
ACL EMNLP
140 140 134
125
105 105
81 82
69
70
70 57
45
35 35
35 30 35 - 28
19 18
11/ g 12 14 o 12
0 2 5 0 9 4
0 0

2012 2013 2014 2015 2016 2017 2018 2019 2012 2013 2014 2015 2016 2017 2018

STATISTICAL MACHINE TRANSLATION

A New Paradigm?

of mentions in paper titles at top-tier NLP conferences (ACL, EMNLP) from 2012 to 2018:

'Deep” "Neural”
ACL
125
81 32
45
35 30
19 18
1/ g 12

140
105
70
35
-
0
2012 2013

2014 2015 2016 2017 2018 2019

2020

140

105

70

35

2012

"Deep’ "Neural
EMNLP
134
69
57
35
28
21
14 12
54 °
2013 2014 2015 2016 2017 2018

ROEE AHARONI

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

What is Deep Learning?

A tamily of machine learning methods that use deep architectures to
learn high-level feature representations from data

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

What is Deep Learning?

A tamily of machine learning methods that use deep architectures
to learn high-level feature representations from data

RRRRRRRRRRR

A basic machine learning setup

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A basic machine learning setup

- Given a dataset of: (x{™,y™), 1, my training examples,

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A basic machine learning setup

- Given a dataset of: (x{™,y™), 1, my training examples,

- input: x(mM ¢ R

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A basic machine learning setup

- Given a dataset of: (x{™,y™), 1, my training examples,
- input: x(m ¢ RY

- output: y'™ ={0,1}

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A basic machine learning setup

- Given a dataset of: (x{™,y™), 1, my training examples,
- input: x(m ¢ RY
- output: y'™ ={0,1}

+ Learn a function f : x — y to predict correctly on new inputs.

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A basic machine learning setup

- Given a dataset of: (x(™),y(™),_, m training examples,
- input: x(m ¢ RY
- output: y'™ ={0,1}
+ Learn a function f : x — y to predict correctly on new inputs.

+ step |: pick a learning algorithm (SVM, log. reg., NN...)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A basic machine learning setup

+ Given a dataset of: (x{™),y(™), _, vy training examples,
- input: x(m ¢ RY
- output: y'™ ={0,1}

+ Learn a function f : x — y to predict correctly on new inputs.
+ step |: pick a learning algorithm (SVM, log. reg., NN...)

- step Il: optimize it w.r.t a loss, i.e: min, 30 (fu(x!™) — y™)?

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Logistic Regression - The “Single Layer” Neural Network

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Logistic Regression - The “Single Layer” Neural Network

- Model the classifier as: f(z) = o(w' - z) = O(Z w;x;)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Logistic Regression - The “Single Layer” Neural Network

- Model the classifier as: f(z) = o(w' - z) = O(Z w;x;)

- Learn the weight vector w € R* using gradient-descent (next slide)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Logistic Regression - The “Single Layer” Neural Network

- Model the classifier as: f(x) = a(wT . T) = O(Z W; ;)

- Learn the weight vector w € R* using gradient-descent (next slide)

. 0(z) = === is a non-linearity, e.g. the sigmoid function (creates
dependency between the features, maps f(x) to [0,1]):

-

0.5

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (Logistic Regression) with Gradient Descent

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (Logistic Regression) with Gradient Descent

» Define the loss-function (squared error, cross entropy...):
LOSS(W) — %Zm(U(WTX(m)) _ y(m))2

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (Logistic Regression) with Gradient Descent

» Define the loss-function (squared error, cross entropy...):
LOSS(W) — %Zm(U(WTX(m)) _ y(m))2

+ Compute the gradient of the loss-function w.r.t. the weight vector, w:
Vwloss =) [U(WTX(’”)) — y(m)}o’(wa(m))X(m)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (Logistic Regression) with Gradient Descent

» Define the loss-function (squared error, cross entropy...):
LOSS(W) — %Zm(U(WTX(m)) _ y(m))z

+ Compute the gradient of the loss-function w.r.t. the weight vector, w:
Vwloss =) [U(WTX("’)) — y(m)}a’(wa(m))X(m)

» Perform gradient-descent:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (Logistic Regression) with Gradient Descent

» Define the loss-function (squared error, cross entropy...):
Loss(w) = %Zm(a(wa(’")) _ y(m))2
+ Compute the gradient of the loss-function w.r.t. the weight vector, w:
VwlLoss =" [a(wTx{M) — y(m)] g/ (wT x(m))x{m)
» Perform gradient-descent:

» Start with a random weight vector

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (Logistic Regression) with Gradient Descent

» Define the loss-function (squared error, cross entropy...):
Loss(w) = 1 57 (a(wTx(m) — y(m))2
+ Compute the gradient of the loss-function w.r.t. the weight vector, w:
VwlLoss =" [a(wTx{M) — y(m)] g/ (wT x(m))x{m)
» Perform gradient-descent:
» Start with a random weight vector

- Repeat until convergence: w < w —y(V, Loss)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (Logistic Regression) with Gradient Descent

» Define the loss-function (squared error, cross entropy...):
Loss(w) = 1 57 (a(wTx(m) — y(m))2
+ Compute the gradient of the loss-function w.r.t. the weight vector, w:
VwlLoss =" [a(wTx{M) — y(m)] g/ (wT x(m))x{m)
» Perform gradient-descent:
- Start with a random weight vector
- Repeat until convergence: w < w —y(V, Loss)

- Y is the learning rate, which is a hyper-parameter

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Stochastic Gradient Descent (SGD)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Stochastic Gradient Descent (SGD)

Instead of deriving the loss on all training
examples per iteration, use only a sub-set
of (random) examples per iteration (“mini-

batch”):

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Stochastic Gradient Descent (SGD)

Instead of deriving the loss on all training

examples per iteration, use only a sub-set
of (random) examples per iteration (“mini-
batch”):

W W — v(ﬁ D meB Error(™) x ¢’ (in{™) % x(m))

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Stochastic Gradient Descent (SGD)

Instead of deriving the loss on all training %

Stochastic Gradient N ag
examples per iteration, use only a sub-set pescent(s60) 7" T
of (random) examples per iteration (“mini- |

batch”):

[
! T
i '
@ '
J

Gradient Descent

W W — v(ﬁ D meB Error(™) x ¢’ (in{™) % x(m))

Faster to converge (more updates per
epoch), but more noisy

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Multi Layer Perceptron (MLP) - a “Deep"” NN

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Multi Layer Perceptron (MLP) - a “Deep"” NN

- Model the classifier as:

f(x) = 0(2;w;- hj) = o (2 wj- o () wipxi))

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Multi Layer Perceptron (MLP) - a “Deep"” NN

- Model the classifier as:

f(x) = 0(2;w;- hj) = o (2 wj- o () wipxi))

- Can be seen as multilayer logistic
regression

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Multi Layer Perceptron (MLP) - a “Deep"” NN

- Model the classifier as:

f(x) = 0(2;w;- hj) = o (2 wj- o () wipxi))

- Can be seen as multilayer logistic
regression

- a.k.a “Feed-Forward NN”

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Multi Layer Perceptron (MLP) - a “Deep"” NN

- Model the classifier as:

f(x) =0(Q_;wj-hj) =0c(2_;w-o();wixi)) @
. . . *
- Can be seen as multilayer logistic W) w /w | w
regression high level"
hj @ features
- a.k.a “Feed-Forward NN” Ny <

v/ ORI
+ The inputs to the final classifier are 9/6 ‘a\g
learned (“representation learning”

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training an MLP with Back-Propagation

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training an MLP with Back-Propagation

+ Assume k=2 outputs per input:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training an MLP with Back-Propagation

+ Assume k=2 outputs per input:

+ Define the loss-function per example: Vi @ @
Loss =Y, % [o(ink) — yil? Wik '
B OFGOPO),
N <

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training an MLP with Back-Propagation

+ Assume k=2 outputs per input:
+ Define the loss-function per example:
Loss = 3, L [o(ink) — yi]°

- Compute the gradient w.r.t. the last layer:

OLoss
Owiji

— 5khj where (5/(— [a(ink) — yk] (Tl(l'nk)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training an MLP with Back-Propagation

+ Assume k=2 outputs per input:

+ Define the loss-function per example: Vi

Loss = >, L [o(ink) — yi]? Wik

- Compute the gradient w.r.t. the last layer: h;

s = by where b = [o(in) — il (i)

+ Compute the gradient w.r.t. the first layer: i
O Loss

ow, = 0jXi where 0; = [}, o,wj] o (inj)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training an MLP with Back-Propagation

+ Assume k=2 outputs per input:

+ Define the loss-function per example: Vi
Loss = 3", L [o(ink) — yil? Wi

- Compute the gradient w.r.t. the last layer: hj
%ngis = {xh; where 0, = [o(ink) — yi| o’ (ing) Wij

+ Compute the gradient w.r.t. the first layer:

OLoss

ow;, = 0jxi where 0; = [, dxwi] o (inj)

- Update the weights: w < w —~(V,Loss)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Why Deeper is Better?

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Why Deeper is Better?

* A deeper architecture is more expressive than a shallow one given same number of nodes (Bishop, 1995)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Why Deeper is Better?

* A deeper architecture is more expressive than a shallow one given same number of nodes (Bishop, 1995)

* 1-layer nets (log. regression) can only model linear hyperplanes

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Why Deeper is Better?

* A deeper architecture is more expressive than a shallow one given same number of nodes (Bishop, 1995)
* 1-layer nets (log. regression) can only model linear hyperplanes

e 2-layer nets can model any continuous function (given sufficient parameters)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Why Deeper is Better?

* A deeper architecture is more expressive than a shallow one given same number of nodes (Bishop, 1995)
* 1-layer nets (log. regression) can only model linear hyperplanes
e 2-layer nets can model any continuous function (given sufficient parameters)

e >3-layer nets can do so with fewer parameters

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Why Deeper is Better?

* A deeper architecture is more expressive than a shallow one given same number of nodes (Bishop, 1995)
* 1-layer nets (log. regression) can only model linear hyperplanes
e 2-layer nets can model any continuous function (given sufficient parameters)

e >3-layer nets can do so with fewer parameters

Example - “learning to XOR”: r Dy = (£L’ V y) A\ —l(ZIZ A\ y)

Input Data Hidden Layer
1.5 : T n T T T T] T
o 1.0 IS C -
Se @ - \\
1.0 | "[;igw @ a@ . 0.8 | i
® M) -
0.6 . =
> 0.5 S §
0.4 | - 8
iﬁ] &
0.0 | m%’s 8 0.2 | ~
@ i @
0.0 | B
_0.5] | | | | | | | |

-0.5 0.0 0.5 1.0 L5 00 0.2 04 06 08 1.0
hl

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNSs)

O00O0O0O0O0O0O0

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNSs)

* Enable variable length inputs (sequences)

O00O0O0O0O0O0O0

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNSs)

* Enable variable length inputs (sequences)

* Modelling internal structure in the input or output

O00O0O0O0O0O0O0

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNSs)

* Enable variable length inputs (sequences)
* Modelling internal structure in the input or output

* Introduce a “memory/context” component to utilize history

000000000

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNSs)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNSs)

+ “Horizontally deep” architecture

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNSs)

+ “Horizontally deep” architecture

+ Recurrence equations:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNSs)

+ "Horizontally deep” architecture
+ Recurrence equations:

+ Transition function: h; = H(hi—1,2:) = tanh(Wzi—1 +Uhy—1 + b)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNSs)

+ "Horizontally deep” architecture
+ Recurrence equations:
- Transition function: hy = H(h¢_1,x;) = tanh(Wx;_1 + Uhy_1 + b)

+ Output function: y: = Y (h¢), usually a sigmoid or softmax

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNSs)

+ "Horizontally deep” architecture
+ Recurrence equations:
- Transition function: hy = H(h¢_1,x;) = tanh(Wx;_1 + Uhy_1 + b)

+ Output function: y: = Y (h¢), usually a sigmoid or softmax

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The Softmax Function and Negative Log Likelihood

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The Softmax Function and Negative Log Likelihood

 Enables to output a probability distribution over k possible classes (words, in our case)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The Softmax Function and Negative Log Likelihood

 Enables to output a probability distribution over k possible classes (words, in our case)

- Y7 (the value of the network output vector in position i) is expected to hold the log-likelihood (probability) of
a specific class (in our case, word):

(T — Z) _ aardvark Bernanke Rosenthal Yellen zebra
P o -k ' ‘ ‘ \ ,

Y ; l : H :
jzz:le s e Hememalloa_d_

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The Softmax Function and Negative Log Likelihood

 Enables to output a probability distribution over k possible classes (words, in our case)

Y4 (the value of the network output vector in position i) is expected to hold the log-likelihood (probability) of
a specific class (in our case, word):

(T — Z) _ aardvark Bernanke Rosenthal Yellen zebra
p k + } " 4 +

Y ; | : H l
jzz:le ndi-n_onlla I [I I e I A = I

- The loss function is usually the sum of negative log softmax values for the correct sequence

Graph for -log(x)

x: 1.22124468 y: -0.086802685

| 13

wrong prediction -
large loss

perfect prediction -
zero loss

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (RNN's) with Backpropagation Through Time

+ As usual, define a loss function (per sample, through time ¢=1,2,...,71"):
T
Loss = J(O©,x) = —) J(O,)
t=1

+ Compute the gradient w.r.t. parameters O, starting at ¢t = 1

— 9J¢
VO = 53
+ Backpropagate through time - sum and repeatfor ¢ — 1 ,until{ = 1:
__ 0Jy
- Eventually, update the weights: ?t ?T/l 1‘sz yTt—l -'?t
@ — W/V('_) ”””””” ht — hl > h2 > s = 2 — ht_1—> ht >
"""" T T T T T

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Vanishing Gradients in Vanilla RNNSs

+ If we dive deeper into the gradients of the RNN loss function, for example:

OJt4n __ OJt4n Og Oh+tt N Oh¢41
8ht 89 aht_|_N 8ht_|_N_1 8ht

- Given h; = tanh(a),a =W,, , + Uh;_1,+b we get that:

Oht41 — T Otanh(a)

8ht oa
+ And Eventually:
OJi4n _ OJiyn T Otanh(atyy)
dh, — dg 8ht+N 1:[U” diag (Datin

+ This easily makes the gradients vanish (get close to 0) so that no learning takes place,
as noted in Bengio et al (94"):

aat—|—’n,

N
H UTdZClg (8tanh(at+n)> 0

n=1

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Vanishing gradients, LSTM's and GRU's

* In order to cope with the vanishing gradients problem T\
in RNN’s, more complex recurrent architectures (
emerged: > —>
* Long Short-Term Memory (Hochreiter & A
Schmidhuber,1999) +ﬁ)"

+ Gated Recurrent Unit (Cho et al, 2014)

* These architectures introduce additive terms that relax
the vanishing gradient problem Figures by Chris Olah

- Most of the recent RNN works utilize such architectures

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps

- Processes a variable length input sequence: x = (x1,x2, - ,Xs)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps

Processes a variable length input sequence: x = (x1,x2, -+ ,Xn)

At any time step, holds a memory cell ¢ and a
hidden state A, used for predicting an output

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps

Processes a variable length input sequence: x = (x1,x2, -+ ,Xn)

At any time step, holds a memory cell ¢ and a
hidden state A, used for predicting an output

Has gates controlling the extent to which:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps

Processes a variable length input sequence: x = (x1,x2, -+ ,Xn)

At any time step, holds a memory cell ¢ and a
hidden state A, used for predicting an output

Has gates controlling the extent to which:

New content should be consumed (input gate)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps

Processes a variable length input sequence: x = (x1,x2, -+ ,Xn)

At any time step, holds a memory cell ¢ and a
hidden state A, used for predicting an output

Has gates controlling the extent to which:
New content should be consumed (input gate)

Old content should be erased (forget gate)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps

Processes a variable length input sequence: x = (x1,x2, -+ ,Xn)

At any time step, holds a memory cell ¢ and a
hidden state A, used for predicting an output

Has gates controlling the extent to which:
New content should be consumed (input gate)
Old content should be erased (forget gate)

Current content should be exposed (output
gate). More formally:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps

Processes a variable length input sequence: x = (x1,x2,-+ ,X) I }t g

ommeman |1 = W Ry,]
At any time step, holds a memory cell ¢; and a output gates and !
hidden state /1; used for predicting an output wdate L ¢t] _tanh_

Has gates controlling the extent to which:
New content should be consumed (input gate)
Old content should be erased (forget gate)

Current content should be exposed (output
gate). More formally:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps

Processes a variable length input sequence: x = (x1,x2,-+ ,X) I }t g
ommeman |1 = W Ry,]
At any time step, holds a memory cell ¢; and a output gates and !
hidden state /; used for predicting an output wise | Ct | | tanh |
compute current) ~
Has gates controlling the extent to which: "%i{i%i%;d ¢ =fiOc-1+i O

New content should be consumed (input gate)
Old content should be erased (forget gate)

Current content should be exposed (output
gate). More formally:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps

Processes a variable length input sequence: x = (x1,x2,-+ ,X) I }t g
compute current " = W [ht —1, Xt]
At any time step, holds a memory cell ¢; and a outpat atesana | 01 °
hidden state /; used for predicting an output “uie | Ct | | tanh |
compute current . ~
Has gates controlling the extent to which: %}Zﬁ%{%}d I1 ¢ = ft OC-1 T OC
New content should be consumed (input gate) T ht — 0,0 tanh(c,) ::E‘E%E;gj:

and memory cell

Old content should be erased (forget gate)

Current content should be exposed (output
gate). More formally:

STATISTICAL MACHINE TRANSLATION 2020

LSTM Walkthrough in 4 Steps

Processes a variable length input sequence: x = (x1,x2, -+ ,Xn) | }t g

. g, forget, Ot — G W [hl‘ —1, Xt]
At any time step, holds a memory cell ¢y and a output gates and !
hidden state /1; used for predicting an output uwdate Lt] _tanh_

compute current

memory cell II Ct — ﬁ @ Ct_l _|_ it @ 6t

Has gates controlling the extent to which: using input and

forget gates

compute current

New content should be consumed (input gate) M ht — o, o tanh(c,) hidden state

using output gate
and memory cell

Old content should be erased (forget gate)

p(xXr41 =wlx1,- -+ ,x;) = exp(u(w,ly))/Z
IV compute current

Current content should be exposed (output
p (p Z — ZW,EV exp(u(w,,ht)) output probabilities

gate). More formally: for prediction by
hidden state

ROEE AHARONI

using softmax over the

LSTM walkthrough in 4 steps

® >
e —
< A
\I o>

LSTM walkthrough in 4 steps
& ® e

O >
CGanh>

((0 A

Ct Ot

tanh O

' forget input memory output j)

[] Q—>>->—<

Neural Network Pointwise Vector
. t t
Layer Operation Transfer Concatenate Copy

f1 o)
compute current
input, forget, Ot O

output, memory 6t tanh
gate values = .

W - [ht—17 xt]

LSTM walkthrough in 4 steps
& ® e

Ct-1 ((

ftOcr1

@ a Ct _*
1:OCt @

Ci Ot A
tanh O
' forget input memory output j)

te current
1 0 — > <] R .
Neural Network Pointwise Vector Concatenate Copy I?len?ory cell I ct p— ﬁ @ Ct—l + lt @ 6t
Layer Operation Transfer uSlng]nput and
forget gates

I i o

fi o)
compute current
input, forget, Ot O

output, memory 6t tanh
gate values = .

W - [ht—17 xt]

LSTM walkthrough in 4 steps

W D

(

&

,P
e t ©) Ct-1 t
“!” . ':1’ -

1:OCt @

Ci Ot he A
tanh 0]

[]

Neural Network
Layer

|

compute current
input, forget,
output, memory
gate values

ggi:rt;ii(s)i T\r/aer(\:;?ér Concatenate
Lt o
fil | o
Ot O
Cy tanh

' forget input memory output j

© &)

O — > i: compute current

memory cell

using input and I Ct = .ft © Cr—1 + il‘ ® 61‘
forget gates
III ht = 0y ® tanh(c,)

Copy

W [ht—17 xt]

compute current
hidden state

using output gate

and memory cell

LSTM walkthrough INn 4 steps

P(xr1 = wlxy, -+, x;) = exp(u(w, hy)) /Z

a a
el fiOcr1

R (D —>
1:OCt @

Ct Ot h: l \
tanh O
' forget input memory output j)

] O —> > : compute current
Neural Network Pointwise Vector memory cell I c — f @ C 1 + i @ 6
Layer Operation Transfer Concatenate Copy using input and t t t'—' t t
_ - _ _ forget gates compute current
i) — () hidden state
I L III ht Ot @ tanh Ct using output gate
¢ ¢ ft . O 1% [h X] and memory cell
compute curren — *(r—1, Xt
input, forget, Ot] P (xt +1 = Wlxla R) = exp(u(w, hy)) / Z compute current
outgr;ttl;, memory | & tanh 1V output probabilities
- - - - f diction b
7 — Zw’ev exp(u(w’,h,)) or prediction by

using softmax over the
hidden state

The GRU Architecture

/l, l

The GRU Architecture

- “Gated Recurrent Unit” Cho et al. (2014)

,l,

2zt = o (W, - |hy_1, x4|)update gate

'y — O (”v,- . [111_1..1';])reset gate

tanh] | candidate iz, = tanh (W - [1', X /1,_1..1',])

) output]I{ — (1 - 31) X lI{_l + 24 X iI{

/I, l

The GRU Architecture

- “Gated Recurrent Unit” Cho et al. (2014)

- Also widely used, simpler than the LSTM

II,

2zt = o (W, - |hy_1, x¢|) update gate

ry = o (W, - |hy_1,x,|)reset gate

o o tanh | | candidate }I{ — tanh (”v ' [I'{ X hl—l- .I'/])

) output /I; — (1 - :f) X /11_1 + 24 X iI{

The GRU Architecture

+ "Gated Recurrent Unit” Cho et al. (2014)
- Also widely used, simpler than the LSTM) i

+ But weaker in “counting” tasks (Weiss and Goldberg, 2018)

-
{ - L
- ™ O

hi (b) a™b" (?‘-LSTM o a‘l().[)bl[)().clt)()
b 2 =0 (U': : []1,_1.;1';])update gate . =
Q—c | [~ A
A ry = O (H'r : [[,,_l.,l-,])reset gate &,’
o o) tanh | | candidate }I{ — tanh (” y [’I'{ X h{—l- .I'{]) \ alﬁ
) output ,I{ - (1 — 31) X 11{_1 + 2t ¥ ll{ 5 B = = =

T (d) a™b*e"-GRU on al()(]bl()(lcl()()

Summary

Summary

e Neural networks can learn rich features representations

Summary

e Neural networks can learn rich features representations

 Trained using end-to-end optimization (e.g. SGD)

Summary

e Neural networks can learn rich features representations
 Trained using end-to-end optimization (e.g. SGD)

e Main components: weight matrices, activation functions

Summary

Neural networks can learn rich features representations
Trained using end-to-end optimization (e.g. SGD)
Main components: weight matrices, activation functions

Deeper networks are more expressive

Summary

Neural networks can learn rich features representations
Trained using end-to-end optimization (e.g. SGD)

Main components: weight matrices, activation functions
Deeper networks are more expressive

Use RNNs to model variable length sequences

Summary

Neural networks can learn rich features representations
Trained using end-to-end optimization (e.g. SGD)

Main components: weight matrices, activation functions
Deeper networks are more expressive

Use RNNs to model variable length sequences

Vanishing gradients, LSTMs and GRUS

Questions ?

Questions diverses ?

