
89688: Statistical Machine Translation

May 2020

Roee Aharoni
Computer Science Department

Bar Ilan University

Based in part on slides by Kevin Duh and Hermann Ney from the DL4MT winter school

Neural Machine Translation

http://dl4mt.computing.dcu.ie/#/home

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The problems of statistical MT

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The problems of statistical MT
• Lots of moving parts (language model,

alignment model, phrase table
construction, distortion model, reordering
models, tuning…)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The problems of statistical MT
• Lots of moving parts (language model,

alignment model, phrase table
construction, distortion model, reordering
models, tuning…)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The problems of statistical MT
• Lots of moving parts (language model,

alignment model, phrase table
construction, distortion model, reordering
models, tuning…)

• Requires extensive feature engineering

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The problems of statistical MT
• Lots of moving parts (language model,

alignment model, phrase table
construction, distortion model, reordering
models, tuning…)

• Requires extensive feature engineering

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The problems of statistical MT
• Lots of moving parts (language model,

alignment model, phrase table
construction, distortion model, reordering
models, tuning…)

• Requires extensive feature engineering

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The problems of statistical MT
• Lots of moving parts (language model,

alignment model, phrase table
construction, distortion model, reordering
models, tuning…)

• Requires extensive feature engineering

• Hard and expensive to capture long-range
dependencies

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The problems of statistical MT
• Lots of moving parts (language model,

alignment model, phrase table
construction, distortion model, reordering
models, tuning…)

• Requires extensive feature engineering

• Hard and expensive to capture long-range
dependencies

• Does not generalize for similar words

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A New Paradigm?

ACL

0

35

70

105

140

2012 2013 2014 2015 2016 2017 2018 2019

125

8281

45
35

11
50

30
1819

128621

"Deep" "Neural"
EMNLP

0

35

70

105

140

2012 2013 2014 2015 2016 2017 2018

134

69
57

35

14
50

28
21

12
6420

"Deep" "Neural"

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A New Paradigm?
of mentions in paper titles at top-tier NLP conferences (ACL, EMNLP) from 2012 to 2018:

ACL

0

35

70

105

140

2012 2013 2014 2015 2016 2017 2018 2019

125

8281

45
35

11
50

30
1819

128621

"Deep" "Neural"
EMNLP

0

35

70

105

140

2012 2013 2014 2015 2016 2017 2018

134

69
57

35

14
50

28
21

12
6420

"Deep" "Neural"

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

What is Deep Learning?

A family of machine learning methods that use deep architectures to
learn high-level feature representations from data

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

What is Deep Learning?

A family of machine learning methods that use deep architectures
to learn high-level feature representations from data

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A basic machine learning setup

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A basic machine learning setup
• Given a dataset of: training examples,

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A basic machine learning setup
• Given a dataset of: training examples,

• input:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A basic machine learning setup
• Given a dataset of: training examples,

• input:

• output:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A basic machine learning setup
• Given a dataset of: training examples,

• input:

• output:

• Learn a function to predict correctly on new inputs.

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A basic machine learning setup
• Given a dataset of: training examples,

• input:

• output:

• Learn a function to predict correctly on new inputs.

• step I: pick a learning algorithm (SVM, log. reg., NN…)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

A basic machine learning setup
• Given a dataset of: training examples,

• input:

• output:

• Learn a function to predict correctly on new inputs.

• step I: pick a learning algorithm (SVM, log. reg., NN…)

• step II: optimize it w.r.t a loss, i.e:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Logistic Regression - The “Single Layer” Neural Network

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

• Model the classifier as:

Logistic Regression - The “Single Layer” Neural Network

f(x) = �(wT · x) = �(
X

i

wixi)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

• Model the classifier as:

• Learn the weight vector using gradient-descent (next slide)

Logistic Regression - The “Single Layer” Neural Network

f(x) = �(wT · x) = �(
X

i

wixi)

w 2 Rd

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

• Model the classifier as:

• Learn the weight vector using gradient-descent (next slide)

• is a non-linearity, e.g. the sigmoid function (creates
dependency between the features, maps to [0,1]):

Logistic Regression - The “Single Layer” Neural Network

�(z) = 1
1+e�z

f(x) = �(wT · x) = �(
X

i

wixi)

w 2 Rd

f(x)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (Logistic Regression) with Gradient Descent

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (Logistic Regression) with Gradient Descent

• Define the loss-function (squared error, cross entropy…):

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (Logistic Regression) with Gradient Descent

• Define the loss-function (squared error, cross entropy…):

• Compute the gradient of the loss-function w.r.t. the weight vector, w:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (Logistic Regression) with Gradient Descent

• Define the loss-function (squared error, cross entropy…):

• Compute the gradient of the loss-function w.r.t. the weight vector, w:

• Perform gradient-descent:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (Logistic Regression) with Gradient Descent

• Define the loss-function (squared error, cross entropy…):

• Compute the gradient of the loss-function w.r.t. the weight vector, w:

• Perform gradient-descent:

• Start with a random weight vector

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (Logistic Regression) with Gradient Descent

• Define the loss-function (squared error, cross entropy…):

• Compute the gradient of the loss-function w.r.t. the weight vector, w:

• Perform gradient-descent:

• Start with a random weight vector

• Repeat until convergence:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (Logistic Regression) with Gradient Descent

• Define the loss-function (squared error, cross entropy…):

• Compute the gradient of the loss-function w.r.t. the weight vector, w:

• Perform gradient-descent:

• Start with a random weight vector

• Repeat until convergence:

• is the learning rate, which is a hyper-parameter�

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Stochastic Gradient Descent (SGD)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Stochastic Gradient Descent (SGD)

Instead of deriving the loss on all training
examples per iteration, use only a sub-set
of (random) examples per iteration (“mini-
batch”):

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Stochastic Gradient Descent (SGD)

Instead of deriving the loss on all training
examples per iteration, use only a sub-set
of (random) examples per iteration (“mini-
batch”):

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Stochastic Gradient Descent (SGD)

Instead of deriving the loss on all training
examples per iteration, use only a sub-set
of (random) examples per iteration (“mini-
batch”):

Faster to converge (more updates per
epoch), but more noisy

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Multi Layer Perceptron (MLP) - a “Deep" NN

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Multi Layer Perceptron (MLP) - a “Deep" NN

• Model the classifier as:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Multi Layer Perceptron (MLP) - a “Deep" NN

• Model the classifier as:

• Can be seen as multilayer logistic
regression

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Multi Layer Perceptron (MLP) - a “Deep" NN

• Model the classifier as:

• Can be seen as multilayer logistic
regression

• a.k.a “Feed-Forward NN”

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Multi Layer Perceptron (MLP) - a “Deep" NN

• Model the classifier as:

• Can be seen as multilayer logistic
regression

• a.k.a “Feed-Forward NN”

• The inputs to the final classifier are
learned (“representation learning”)

“high level”
features

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training an MLP with Back-Propagation

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training an MLP with Back-Propagation
• Assume k=2 outputs per input:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training an MLP with Back-Propagation
• Assume k=2 outputs per input:

• Define the loss-function per example:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training an MLP with Back-Propagation
• Assume k=2 outputs per input:

• Define the loss-function per example:

• Compute the gradient w.r.t. the last layer:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training an MLP with Back-Propagation
• Assume k=2 outputs per input:

• Define the loss-function per example:

• Compute the gradient w.r.t. the last layer:

• Compute the gradient w.r.t. the first layer:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training an MLP with Back-Propagation
• Assume k=2 outputs per input:

• Define the loss-function per example:

• Compute the gradient w.r.t. the last layer:

• Compute the gradient w.r.t. the first layer:

• Update the weights:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Why Deeper is Better?

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Why Deeper is Better?
• A deeper architecture is more expressive than a shallow one given same number of nodes (Bishop, 1995)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Why Deeper is Better?
• A deeper architecture is more expressive than a shallow one given same number of nodes (Bishop, 1995)

• 1-layer nets (log. regression) can only model linear hyperplanes

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Why Deeper is Better?
• A deeper architecture is more expressive than a shallow one given same number of nodes (Bishop, 1995)

• 1-layer nets (log. regression) can only model linear hyperplanes
• 2-layer nets can model any continuous function (given sufficient parameters)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Why Deeper is Better?
• A deeper architecture is more expressive than a shallow one given same number of nodes (Bishop, 1995)

• 1-layer nets (log. regression) can only model linear hyperplanes
• 2-layer nets can model any continuous function (given sufficient parameters)
• >3-layer nets can do so with fewer parameters

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Why Deeper is Better?
• A deeper architecture is more expressive than a shallow one given same number of nodes (Bishop, 1995)

• 1-layer nets (log. regression) can only model linear hyperplanes
• 2-layer nets can model any continuous function (given sufficient parameters)
• >3-layer nets can do so with fewer parameters

Example - “learning to XOR”:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNs)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNs)

• Enable variable length inputs (sequences)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNs)

• Enable variable length inputs (sequences)

• Modelling internal structure in the input or output

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNs)

• Enable variable length inputs (sequences)

• Modelling internal structure in the input or output

• Introduce a “memory/context” component to utilize history

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNs)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNs)
• “Horizontally deep” architecture

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNs)
• “Horizontally deep” architecture

• Recurrence equations:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNs)
• “Horizontally deep” architecture

• Recurrence equations:

• Transition function: ht = H(ht�1, xt) = tanh(Wxt�1 + Uht�1 + b)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNs)
• “Horizontally deep” architecture

• Recurrence equations:

• Transition function:

• Output function: , usually a sigmoid or softmaxyt = Y (ht)

ht = H(ht�1, xt) = tanh(Wxt�1 + Uht�1 + b)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Recurrent Neural Networks (RNNs)
• “Horizontally deep” architecture

• Recurrence equations:

• Transition function:

• Output function: , usually a sigmoid or softmaxyt = Y (ht)

ht = H(ht�1, xt) = tanh(Wxt�1 + Uht�1 + b)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The Softmax Function and Negative Log Likelihood

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The Softmax Function and Negative Log Likelihood
• Enables to output a probability distribution over k possible classes (words, in our case)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The Softmax Function and Negative Log Likelihood
• Enables to output a probability distribution over k possible classes (words, in our case)

• (the value of the network output vector in position i) is expected to hold the log-likelihood (probability) of
a specific class (in our case, word):

p(x = i) = eyi
kP

j=1
eyj

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

The Softmax Function and Negative Log Likelihood
• Enables to output a probability distribution over k possible classes (words, in our case)

• (the value of the network output vector in position i) is expected to hold the log-likelihood (probability) of
a specific class (in our case, word):

• The loss function is usually the sum of negative log softmax values for the correct sequence

p(x = i) = eyi
kP

j=1
eyj

wrong prediction -
large loss

perfect prediction -
zero loss

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Training (RNN’s) with Backpropagation Through Time
• As usual, define a loss function (per sample, through time):

• Compute the gradient w.r.t. parameters , starting at :

• Backpropagate through time - sum and repeat for , until :

• Eventually, update the weights:

r⇥ = �Jt
�⇥ t = T

t = 1, 2, ..., T

t = 1t� 1

⇥ = �r⇥

Loss = J(⇥, x) = �
TP

t=1
Jt(⇥, xt)

r⇥ = @Jt
@⇥

r⇥ = r⇥+ @Jt
@⇥

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Vanishing Gradients in Vanilla RNNs
• If we dive deeper into the gradients of the RNN loss function, for example:

• Given , we get that:

• And Eventually:

• This easily makes the gradients vanish (get close to 0) so that no learning takes place,
as noted in Bengio et al (94’):

@Jt+n

@ht
= @Jt+n

@g
@g

@ht+N

@ht+N

@ht+N�1
...@ht+1

@ht

ht = tanh(a), a = Wxt�1 + Uht�1 + b

@ht+1

@ht
= UT @tanh(a)

@a

@Jt+n

@ht
= @Jt+n

@g
@g

@ht+N

NQ
n=1

UT diag
⇣

@tanh(at+n)
@at+n

⌘

NQ
n=1

UT diag
⇣

@tanh(at+n)
@at+n

⌘
! 0

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Vanishing gradients, LSTM’s and GRU’s

• In order to cope with the vanishing gradients problem
in RNN’s, more complex recurrent architectures
emerged:

• Long Short-Term Memory (Hochreiter &
Schmidhuber,1999)

• Gated Recurrent Unit (Cho et al, 2014)

• These architectures introduce additive terms that relax
the vanishing gradient problem

• Most of the recent RNN works utilize such architectures

Figures by Chris Olah

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps
• Processes a variable length input sequence:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps
• Processes a variable length input sequence:

• At any time step, holds a memory cell and a
hidden state used for predicting an output

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps
• Processes a variable length input sequence:

• At any time step, holds a memory cell and a
hidden state used for predicting an output

• Has gates controlling the extent to which:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps
• Processes a variable length input sequence:

• At any time step, holds a memory cell and a
hidden state used for predicting an output

• Has gates controlling the extent to which:

• New content should be consumed (input gate)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps
• Processes a variable length input sequence:

• At any time step, holds a memory cell and a
hidden state used for predicting an output

• Has gates controlling the extent to which:

• New content should be consumed (input gate)

• Old content should be erased (forget gate)

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps
• Processes a variable length input sequence:

• At any time step, holds a memory cell and a
hidden state used for predicting an output

• Has gates controlling the extent to which:

• New content should be consumed (input gate)

• Old content should be erased (forget gate)

• Current content should be exposed (output
gate). More formally:

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps
• Processes a variable length input sequence:

• At any time step, holds a memory cell and a
hidden state used for predicting an output

• Has gates controlling the extent to which:

• New content should be consumed (input gate)

• Old content should be erased (forget gate)

• Current content should be exposed (output
gate). More formally:

Ⅰ
compute current

input, forget,
output gates and

memory cell
update

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps
• Processes a variable length input sequence:

• At any time step, holds a memory cell and a
hidden state used for predicting an output

• Has gates controlling the extent to which:

• New content should be consumed (input gate)

• Old content should be erased (forget gate)

• Current content should be exposed (output
gate). More formally:

Ⅰ
compute current

input, forget,
output gates and

memory cell
update

Ⅱ
compute current

memory cell
using input and

forget gates

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps
• Processes a variable length input sequence:

• At any time step, holds a memory cell and a
hidden state used for predicting an output

• Has gates controlling the extent to which:

• New content should be consumed (input gate)

• Old content should be erased (forget gate)

• Current content should be exposed (output
gate). More formally:

Ⅰ
compute current

input, forget,
output gates and

memory cell
update

Ⅱ
compute current

memory cell
using input and

forget gates

Ⅲ
compute current

hidden state
using output gate
and memory cell

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

LSTM Walkthrough in 4 Steps
• Processes a variable length input sequence:

• At any time step, holds a memory cell and a
hidden state used for predicting an output

• Has gates controlling the extent to which:

• New content should be consumed (input gate)

• Old content should be erased (forget gate)

• Current content should be exposed (output
gate). More formally:

Ⅰ
compute current

input, forget,
output gates and

memory cell
update

Ⅱ
compute current

memory cell
using input and

forget gates

Ⅲ
compute current

hidden state
using output gate
and memory cell

Ⅳ compute current
output probabilities

for prediction by
using softmax over the

hidden state

LSTM walkthrough in 4 steps

LSTM walkthrough in 4 steps

inputforget outputmemory

ft ĉt otit

Ⅰ
compute current

input, forget,
output, memory

gate values

ht-1

ct-1

LSTM walkthrough in 4 steps

inputforget outputmemory

ft ĉt otit

Ⅰ
compute current

input, forget,
output, memory

gate values

ht-1

ct-1

Ⅱ

ft⊙ct-1

it⊙ĉt

ct

compute current
memory cell

using input and
forget gates

LSTM walkthrough in 4 steps

ht

Ⅲ
compute current

hidden state
using output gate
and memory cell

inputforget outputmemory

ft ĉt otit

Ⅰ
compute current

input, forget,
output, memory

gate values

ht-1

ct-1

Ⅱ

ft⊙ct-1

it⊙ĉt

ct

compute current
memory cell

using input and
forget gates

LSTM walkthrough in 4 steps

Ⅳ compute current
output probabilities

for prediction by
using softmax over the

hidden state

ht

Ⅲ
compute current

hidden state
using output gate
and memory cell

inputforget outputmemory

ft ĉt otit

Ⅰ
compute current

input, forget,
output, memory

gate values

ht-1

ct-1

Ⅱ

ft⊙ct-1

it⊙ĉt

ct

compute current
memory cell

using input and
forget gates

The GRU Architecture

update gate

reset gate

candidate

output

The GRU Architecture
• “Gated Recurrent Unit” Cho et al. (2014)

update gate

reset gate

candidate

output

The GRU Architecture
• “Gated Recurrent Unit” Cho et al. (2014)

• Also widely used, simpler than the LSTM

update gate

reset gate

candidate

output

The GRU Architecture
• “Gated Recurrent Unit” Cho et al. (2014)

• Also widely used, simpler than the LSTM

• But weaker in “counting” tasks (Weiss and Goldberg, 2018)

Summary

Summary
• Neural networks can learn rich features representations

Summary
• Neural networks can learn rich features representations

• Trained using end-to-end optimization (e.g. SGD)

Summary
• Neural networks can learn rich features representations

• Trained using end-to-end optimization (e.g. SGD)

• Main components: weight matrices, activation functions

Summary
• Neural networks can learn rich features representations

• Trained using end-to-end optimization (e.g. SGD)

• Main components: weight matrices, activation functions

• Deeper networks are more expressive

Summary
• Neural networks can learn rich features representations

• Trained using end-to-end optimization (e.g. SGD)

• Main components: weight matrices, activation functions

• Deeper networks are more expressive

• Use RNNs to model variable length sequences

Summary
• Neural networks can learn rich features representations

• Trained using end-to-end optimization (e.g. SGD)

• Main components: weight matrices, activation functions

• Deeper networks are more expressive

• Use RNNs to model variable length sequences

• Vanishing gradients, LSTMs and GRUs

