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What is a Language Model?
• A language model             measures 

how likely is the sentence:

• Usually modelled as a product of 
conditional probabilities:

• The conventional approach -
assume a Markov chain of order n: 

• and count:

p(wN
1 )

wN
1 = x1, x2, ..., xN

p(x1, x2, . . . , xN ) =
TQ

t=1
p(xt | x1, ..., xt�1)

p(x1, x2, . . . , xN ) =
TQ

t=1
p(xt | xt�n, ..., xt�1)

p(xt | xt�n, . . . , xt�1) =
count(xt�n,...,xt�1,xt)
count(xt�n,...,xt�1)
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What is a Language Model?
• Let’s compute:

• Unigram LM:

• Bi-gram LM:

• Tri-gram LM:

p(i, would, like, to, ..., < /s >)

Perplexity - The lower, the better

p(i)p(would)p(like)...p(< /s >)

p(i)p(would | i)p(like | would)...p(< /s >| .)

p(i)p(would | i)p(like | i, would)...p(< /s >| work, .)
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A Note on Perplexity
• Perplexity is the inverse probability of 

the unseen test set, normalised by the 
number of words:

• Can be seen as an exponentiation of 
the entropy:

• Lower perplexity means lower entropy 
which means less uncertainty 

• So lower = better

from a blog post by Aerin Kim

https://towardsdatascience.com/perplexity-intuition-and-derivation-105dd481c8f3
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Language Modelling with an MLP
• Start with one-hot encoding of 

each word

• Learn word representations in a 
continuous space

• Hidden layer using a non-linear 
activation

• Output probabilities using softmax
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• MLP LM’s are still limited in history (use 
n-gram assumption)

• We would like to use RNN’s to model the 
entire sentence “at once”

• Every input is a 1-hot vector, every 
output is the LM probabilities as softmax



Language Modelling with RNNs



Language Modelling with RNNs

• RNN’s provide significant 
improvements over previous models



Language Modelling with RNNs

• RNN’s provide significant 
improvements over previous models

• A price to pay: longer training time



Distributed Word Representations using word2vec



Distributed Word Representations using word2vec

• Continuous word representations are 
learned for each word during network 
training (a.k.a “word embeddings”)



Distributed Word Representations using word2vec

• Continuous word representations are 
learned for each word during network 
training (a.k.a “word embeddings”)

• These representations can be useful for 
various tasks like word similarity and word 
analogies:
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Distributed Word Representations using word2vec

• word2vec (mikolov et al. 2003) 
introduced two similar models:

• CBOW (left) and skip-gram (right), both 
can be seen as MLP’s

• Have been shown to approximate the 
PMI matrix (Levy & Goldberg, 2015)
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• Reminder - Statistical MT

• Idea - use an MLP to train a 
translation model

• Inputs are 1-hot encodings of the 
words in the aligned source language 
window

• Combine this model with the rest 
while decoding or rescoring
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MLPs for Machine Translation - “Hybrid” SMT

• Another idea - Bilingual LM

• Inputs are 1-hot encodings of: 

• The words in the aligned source 
language window 

• Previous words in the translation 
hypothesis

• ACL 2014 Best Paper (Devlin et al, 2014)
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Machine Translation with RNNs

• More formally - model              using a single neural network:p(y|x) = p(y1|x)p(y2|y1, x)p(y3|y1, y2, x). . . p(yN |y1...yN�1, x)

y = y1...yN

p(y|x) = p(y1|x)p(y2|y1, x)p(y3|y1, y2, x). . . p(yN |y1...yN�1, x)

p(yi = wordk|y<i, x) = softmaxk(NN⇥(y<i, x))
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• Instead of using a single vector as a fixed representation of the input sequence, 

“attend” at each step to the relevant parts of the input 

• The “importance” of each input element to the current prediction is computed via 
a feed-forward network that gets the input element and the current decoder state
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The Attention Mechanism
• And a bit more formally - in each decoder step:

• Compute attention scores for each input element:

• Normalize the attention scores so they sum up to 1:

• Compute ct:

• Compute attention output state:

• Compute output probability distribution:

ct =
TxX

j=1

aj h̄j
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• Instead of keeping one best option on each time step, keep k best options 
which are updated as-you-go

• Requires to maintain different RNN states in-memory for each hypothesis

• Usually a small beam size is enough (5-12)

Greedy Search Beam Search (k=2)
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Effect of Sentence Length 

• Results deteriorate for longer 
sentences as they are “compressed” 
to a fixed length vector

• The attention mechanism “opens the 
bottleneck”

Bahdanau, Cho and Bengio (2014)
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Attention and Interpretability

• The model learns to “align” source 
and target representations

• No explicit alignment supervision 
was given!

• But this isn’t always perfect…

Koehn and Knowles, 2017
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• Vaswani et al. (2017) 

• “Attention is All You Need” 

• Main idea: replace RNNs with self 
attention layers 

• Can be parallelized at the sequence 
level - faster training of large 
networks

the cat sat on the mat </s>
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Other Important Details
• Positional encodings

• Multi-head attention

• Layer normalization

• Decoder - masked self attention

• Unlike LSTM based models-

• encoder-decoder-attention in each 
layer!

• Less interpretable

• Learning rate schedule - more sensitive to 
hyperparams than LSTM-based models
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Summary
• Neural networks are very useful for language modeling

• Better generalization, more context

• Neural language models: from MLPs to RNNs

• Sequence-to-Sequence Learning

• The Attention Mechanism

• The Transformer Architecture




