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word unigram | bigram | trigram | 4-gram

i 6.684 3.197 3.197 3.197
would 8.342 2.884 2.791 2.791
like 0.129 2.026 1.031 1.290

to 5.081 0.402 0.144 0.113
commend 15.487 | 12.335 8.794 8.633
the 3.885 1.402 1.084 0.880
rapporteur 10.840 | 7.319 2.763 2.350
on 6.765 | 4.140 4.150 1.862

his 10.678 | 7.316 2.367 1.978
work 9.993 4.816 3.408 2.394

. 4.896 3.020 1.785 1.510

< /s> 4828 | 0.005 0.000 0.000
average 8.051 4.072 2.634 2.251
perplexity | 265.136 | 16.817 6.206 4.758

Perplexity - The lower, the better
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- Let's compute:
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What is a Language Model?

Let's compute:

p(i, would, like, to, ..., < /s >)
Unigram LM:
p(1)p(would)p(like)...p(< /s >)
Bi-gram LM:
p(i)p(would | 7)p(like | would)...p(< /s >| .)
Tri-gram LM:
p(i)p(would | i)p(like | i, would)...p(< /s >| work, .)
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+ Perplexity is the inverse probability of
the unseen test set, normalised by the
number of words:

+ Can be seen as an exponentiation of
the entropy:
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A Note on Perplexity

+ Perplexity is the inverse probability of
the unseen test set, normalised by the
number of words:

+ Can be seen as an exponentiation of
the entropy:

+ Lower perplexity means lower entropy
which means less uncertainty

- So lower = better
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Language Modelling with an MLP

- Start with one-hot encoding of Po(Wn|Wn 2, W)
each word

+ Learn word representations in a
continuous space

+ Hidden layer using a non-linear
activation

\/

00000000 OO0.0000
+ OQutput probabilities using softmax Wn—2 W1
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Py (wn|wn- 2y Wy -1)

+ Experiment details (Sundermeyer, Ney & Schulter, 2015): 000080000

» vocabulary size: 128k words

O0O000

+ training text: 50M words

+ development corpus: 39k words

+ evaluation corpus: 35k words

OO0000e0O00 OCO0@OO000

. Network structure: o o
- projection layer: 300 nodes (per word
Pro) 4 P ) Approach PPL
- hidden layer: 600 nodes 4-gram count model 163.7
- total b f : 128k - 300 + 600 - 128k = 115M 10-gram MLP 1909
Otal IUMDEROT paraims. 126k 500 = 000 - Leok = 10-gram MLP with 2 layers | 130.9
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Language Modelling with RNNs

+ MLP LM's are still limited in history (use
N-gram assumption)

p(the) p(cat]|.. p(is|...) p(eating|...)
+ We would like to use RNN's to model the . @ @ @
entire sentence “at once” :
the cat

+ Every input is a 1-hot vector, every
output is the LM probabilities as softmax
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Language Modelling with RNNs

Approach PPL

count model 163.7

10-gram MLP 136.5

. o RNN 125.2

* RNN's provide significant 'LSTM-RNN 107.8
improvements over previous models 10-gram MLP with 2 layers | 130.9
'LSTM-RNN with 2 layers | 100.5

- A price to pay: longer training time

'Models | PPL CPU Time (Order)
Count model | 163.7 30 min
MLP 136.5 1 week

LSTM-RNN 107.8 3 weeks
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Distributed Word Representations using word2vec

15

e Continuous word representations are
earned for each word during network |
training (a.k.a “word embeddings”)

e These representations can be useful for
various tasks like word similarity and word
analogies: )

Country and Capital Vectors Projected by PCA

05

.
China

Beijing
Russia
Japan
Moscow
Turkey Ankara “Tokyo
Poland
Germany
France Warsaw
. Berlin
Italy Paris
< Athens
Greece
. Spain Rome
- Portugal Usbo?"‘ad”d
-1.5 1 -0.5 0.5 1 1.5
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- word2vec (mikolov et al. 2003)

introduced two similar models:
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Distributed Word Representations using word2vec

- word2vec (mikolov et al. 2003)

introduced two similar models:

+ CBOW (left) and skip-gram (right), both *

can be seen as MLP's
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Distributed Word Representations using word2vec

- word2vec (mikolov et al. 2003)
introduced two similar models:

+ CBOW (left) and skip-gram (right), both

can be seen as MLP's

+ Have been shown to approximate the

PMI matrix (Levy & Goldberg, 2015)
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- Reminder - Statistical MT

Source Language Text

( o . ) Models
reprocessing

N
Language Models )

~

Global Search Phrase Models

E = argmax{p(E|F)}

Word Models

J

— argmax{X A'm,h"rn(ll;" F)}
E m

‘E

( Postprocessing)

. Y
Reordering Models )

)

AT

Target Language Text



MLPs for Machine Translation - “Hybrid” SMT

- Reminder - Statistical MT

- |dea - use an MLP to train a
translation model
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- Reminder - Statistical MT

- |dea - use an MLP to train a
translation model

- Inputs are 1-hot encodings of the
words in the aligned source language
window

p(ei| £y 1)
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MLPs for Machine Translation - “Hybrid” SMT

- Reminder - Statistical MT

p(ei| £y 1)

* |dea - use an MLP to train a OOO000O®00
translation model
: O0000
- Inputs are 1-hot encodings of the
words in the aligned source language
WindOW OO |00 |00

- Combine this model with the rest

O@OOO | | OOOOO | | @OOOO

while decoding or rescoring - 3 ot
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MLPs for Machine Translation - “Hybrid” SMT

- Another idea - Bilingual LM
peileir, £}

000000800

+ Inputs are 1-hot encodings of:

- The words in the aligned source
language window

- Previous words in the translation
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MLPs for Machine Translation - “Hybrid” SMT

- Another idea - Bilingual LM
+ Inputs are 1-hot encodings of:

- The words in the aligned source
language window

 Previous words in the translation
hypothesis
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MLPs for Machine Translation - “Hybrid” SMT

- Another idea - Bilingual LM
+ Inputs are 1-hot encodings of:

- The words in the aligned source
language window

 Previous words in the translation
hypothesis

+ ACL 2014 Best Paper (Devlin et al, 2014)

pollutant °
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their °
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» First (modern) models for end-to-end Neural Machine Translation presented by
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 More formally - model p(y|z) using a single neural network:

Yy=1Yi...-Yn
p(?/\l') — p(yl\x)p(yg\yl, x)p(yg\yl, Y2, ZL‘)- : .p(yN\y1...yN_1, f)

p(y; = wordy|y<i,x) = softmaxy(NNe(y<i,T))
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The Problem with Vanilla seg2seq

“You can’t cram the meaning of a
whole 7%&!$# sentence into a
single $&!H#* vector!” Rray Mooney
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And a bit more formally - in each decoder step:

» Compute attention scores for each input element:

score(hy, hg) = tanh(W, hy; hs])

- Normalize the attention scores so they sum up to 1:
_ exp (score(hyt, hy))
— l h hs — h
ar(s) = align(he, h) = S~ score(he, i)

» Compute ct: Lo
Ct — E CLjhj
j=1

» Compute attention output state:
ht — tanh(Wc [Ct; ht])

~v

» Compute output probability distribution: p(y¢|y<¢, ) = softmax(Wshy)
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* Instead of keeping one best option on each time step, keep k best options
which are updated as-you-go

* Requires to maintain different RNN states in-memory for each hypothesis
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Decoding with Beam Search

* Instead of keeping one best option on each time step, keep k best options
which are updated as-you-go

* Requires to maintain different RNN states in-memory for each hypothesis

» Usually a small beam size is enough (5-12)
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Figure 9: Mismatch between attention states and
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Self Attention and The Transformer Architecture

e VVaswani et al. (2017)

e “Attention i1s All You Need”

 Main idea: replace RNNs with self
attention layers
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level - faster training of large
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» Positional encodings

» Multi-head attention

» Layer normalization

» Decoder - masked self attention
» Unlike LSTM based models-

¢ encoder-decoder-attention in each
layer!

» Less interpretable

» Learning rate schedule - more sensitive to
hyperparams than LSTM-based models
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