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NMT is all you need?
• Neural machine translation 

(NMT) has strong advantages:

• Simple to train - “end-to-end"

• Fully context-aware

• But how does it perform?
Bi-Directional Encoder Attention-based Decoder
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Back to WMT
• Main benchmark for MT 

• 2015 - first time a syntax-
based system “wins”

• Also 2015 - First time an NMT 
system (MILA) competes

• 2016 - NMT system wins! 
(Edinburgh)
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What made NMT win?
• Several important methods 

were introduced in 2015-2016 
to make NMT outperform PBMT

• Main issues to address: 

• Handling large vocabularies

• Using unlabelled data (“LM”)

• We will discuss both
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Handling Large Vocabularies
• Natural language is diverse

• We need to cover both common 
words and rare words

• Using a small vocabulary (top k 
words) - low coverage, many 
unknown words

• Using a large vocabulary - sparse, 
requires more parameters - slow

By SergioJimenez - Own work, CC BY-SA 4.0

https://commons.wikimedia.org/w/index.php?curid=45516736
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How do we handle “unknown” words?

• Unknown words are inevitable - new 
words are always invented around us:

• We can’t use an inifinite vocabulary…

• “UNK” token - replace each unknown 
word with an “UNK” symbol

• Good: Enables to encode any sentence

• Bad: Throws away information…

• How can we do better?

This is a Wampimuk in the wild . 

This is a UNK in the wild . 

from Lazaridou et al. 2014

https://www.aclweb.org/anthology/P14-1132.pdf
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• Ling et al. 2015 - Char2Vec and Vec2Char with 
LSTMs
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• No unknown words! Models morphology

• Very long sequences - slow…

• How do we model this?

• Ling et al. 2015 - Char2Vec and Vec2Char with 
LSTMs

• Costa Jussa et al 2016 - using word-level 
convolutions (faster)

• Chung et al. 2016, Lee et al. 2016 -  No need for 
word segmentation! 
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Character Level MT
• An simple solution - work at the character level:

• No unknown words! Models morphology

• Very long sequences - slow…

• How do we model this?

• Ling et al. 2015 - Char2Vec and Vec2Char with 
LSTMs

• Costa Jussa et al 2016 - using word-level 
convolutions (faster)

• Chung et al. 2016, Lee et al. 2016 -  No need for 
word segmentation! 

• Requires deep models to work well (Cherry et al 2018)

from Lazaridou et al. 2014
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Seq2Seq with a Copy Mechanism
• Another solution for unknown words: 

“copy” them “as-is" from source

• “Pointing the Unknown Words” (Gulchere 
et al 2016)

• Interpolate the attention distribution and 
the softmax distribution 

• Useful in summarization tasks (Gu et al 
2016, See et al. 2017)

• Problem - can’t copy in all cases

https://arxiv.org/pdf/1603.08148.pdf
https://www.aclweb.org/anthology/P16-1154.pdf
https://www.aclweb.org/anthology/P16-1154.pdf
https://www.aclweb.org/anthology/P17-1099.pdf
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A practical middle ground: BPE
• “Neural Machine Translation of Rare Words with 

Subword Units” Sennrich et al, 2015

• Uses the “Byte-Pair Encoding” compression 
algorithm (Gage, 1994):

• Start bottom up from characters as symbols

• Pick the most common symbol pair 

• Merge it to a new symbol

• Repeat until the desired vocal size

• The current standard for word segmentation in NLP 
applications (1900+ citations)

• Controllable vocabulary size, no UNKs!

זהו צילום של ק@@ אנ@@ ארי רו ב-19@@ 32 .

This is a shot of C@@ ann@@ ery R@@ ow in 19@@ 32 .

https://arxiv.org/pdf/1508.07909.pdf
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Using Monolingual Data
• Statistical MT used language models 

extensively. What about NMT?

• Koehn & Knowles 2017

• SMT is better in low resource 
settings

• Especially with a LM

• How can we incorporate a LM into 
NMT?

https://www.aclweb.org/anthology/W17-3204.pdf
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Back-Translation
• Sennrich et al. 2016

• A simpler approach - synthesize parallel data from 
monolingual data:

• Train a “reverse” model with the available parallel data

• Translate the monolingual data using the reverse 
model

• Train a model using the “real” parallel data and the 
synthetic parallel data

• The driving force of todays state-of-the-art systems

• To “fix” the noise of synthetic data, usually followed by 
fine-tuning on “clean” data 

English 
(real-parallel)

German 
(real-parallel) Train

English 
(real-mono)

German 
(synthetic) Synthesize

German 
(real-parallel+ 
synthetic)

English 
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Transfer Learning
• Back-Translation gives nice improvements, but 

monolingual data is not as good as parallel data

• Can we use parallel data from other language 
pairs?

• “Transfer Learning for Low-Resource Neural 
Machine Translation”, Zoph et al. (2016)

• Idea - Train a high-resource “parent” model 
(French-English) and fine-tune it for a low-
resource “child” pair (Uzbek-English)

• Freezing some parts of the network helps - 
avoids “catastrophic forgetting”

https://www.aclweb.org/anthology/D16-1163.pdf
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Multilingual NMT
• One approach: separate encoder/

decoder per language (Dong et al. 
2015, Firat et al. 2016)

• Pros - each language has its own 
parameters, no interference

• Cons - complex architecture, 
less parameter sharing for 
transfer

the cat sat on the mat

tapischat assis sur le </s>le

חתולשטיח ישב על ה </s>ה

</s>

https://www.aclweb.org/anthology/P15-1166.pdf
https://www.aclweb.org/anthology/P15-1166.pdf
https://arxiv.org/pdf/1601.01073.pdf
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Multilingual NMT
• Another approach - share all 

parameters (Johnson et al. 2016, Ha 
et al. 2016)

• Use a special language token to 
control the target language

• Pros - Full parameter sharing, no 
architecture changes

• Con - languages may “interfere” 
each other

the cat sat on the mat </s><2he>

חתולשטיח ישב על ה </s>ה

the cat sat on the mat </s><2fr>

tapischat assis sur le </s>le
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Multilingual NMT
• A third approach - “in between”

• Share only some of the parameters

• Blackwood et al (2018) - all but the 
attention

• Platanios et al (2018) - learn what to 
share

• Can reduce interference

• More complex models

the cat sat on the mat </s><2fr>

tapischat assis sur le </s>lefr 
attn

he 
attn

https://arxiv.org/pdf/1806.03280.pdf
https://arxiv.org/pdf/1808.08493.pdf
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Massively Multilingual NMT
• Most works until 2018 - up to 5 

languages, 20 translation 
directions (one outlier)

• Why stop here? 
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Massively Multilingual NMT

• Multilingual models significantly 
outperform baselines

• Many-to-Many models outperform fine-
tuned Many-to-One models

• Similar result in language pairs with 
more data (baselines stronger here)

• Why? many-to-many is “harder” 🤔
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Multilinguality as Regularization

• The models we used are very large - 
prone to overfitting on the small 
datasets

• Having many target languages makes 
it harder to memorize, even with 
small data

• Also easy to memorize since multi-
way parallel
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Evaluating out of English
• One-to-Many outperform 

Many-to-Many and baselines

• Many-to-Many models are 
biased towards English in the 
target

• When English memorization is 
not an issue, better to train on 
fewer directions
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Experiments - High Resource
• We saw that:

• Massively multilingual many-to-many models win when 
going into-English (reduce memorization)

• One-to-many models are better when going out of English 
(not biased to English)

• Does this hold:

• With even more languages? 

• With larger, balanced, “real-world” datasets?
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• Transformer Big(ger) models

• 473.7M parameters (vs. 213M in Big)

• Joint subword vocabulary with 64k symbols (24k unique characters)

• In-house dataset

• English-Centric: 102 Languages to/from English (mirrored)

• ~1M examples per language pair (balanced)

• Not multi-way parallel

Experiments - High Resource
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Results - Into English

• Many-to-one model outperforms baselines and Many-to-Many

• When the data is large enough and not multi-way-parallel, 
memorization is not an issue and “less is more”

• German and Italian outliers - due to interference 

• Many-to-one reached 38 BLEU when evaluated using German only dev-
set, but degraded
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Results - Out of English

• Clear advantage to the one-to-many model in all cases

• Up to 6-8 BLEU improvement over baseline (Slovak, 
German)

• Less burden, not biased towards English
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Analysis
• The previous experiments present an extreme case (100+ 

languages in a single model)

• What is the trade-off between the number of languages 
and model performance?

• Both supervised and Zero-Shot

• Keep model fixed, measure performance on 5 languages 
while varying the number of additional languages
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Analysis - Supervised Directions

• Clear trade-off between number of languages and model accuracy

• Maybe we need even bigger models? 1M examples per language 
pair is not very large… (in MT scale)
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Analysis - Zero-Shot Directions

• 50-to-50 strikes a good balance 
between capacity and 
generalization

• Similar languages are much easier

• General trend - more languages, 
more generalization (interlingua?) 
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Analysis - Internal Representations

• Kudugunta et al. 2019 investigated the 
representations learned by massively 
multilingual models

• Encoder representations of different 
languages cluster based on linguistic similarity

• Representations of a source language learned 
by the encoder are dependent on the target 
language, and vice-versa

• Representations of high resource and/or 
linguistically similar languages are more robust 
when fine-tuning on an arbitrary language pair

https://arxiv.org/pdf/1909.02197.pdf
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Summary
•NMT is a strong tool, but needs some tweaks to work well

•To handle large vocabularies:

•Word-based models + UNKs

•Character level models

•Middle-ground: subword models (BPE)

•To use monolingual data:

•Language model fusion

•Back-translation

•Transfer learning

•Multilingual NMT - more transfer, practical




