

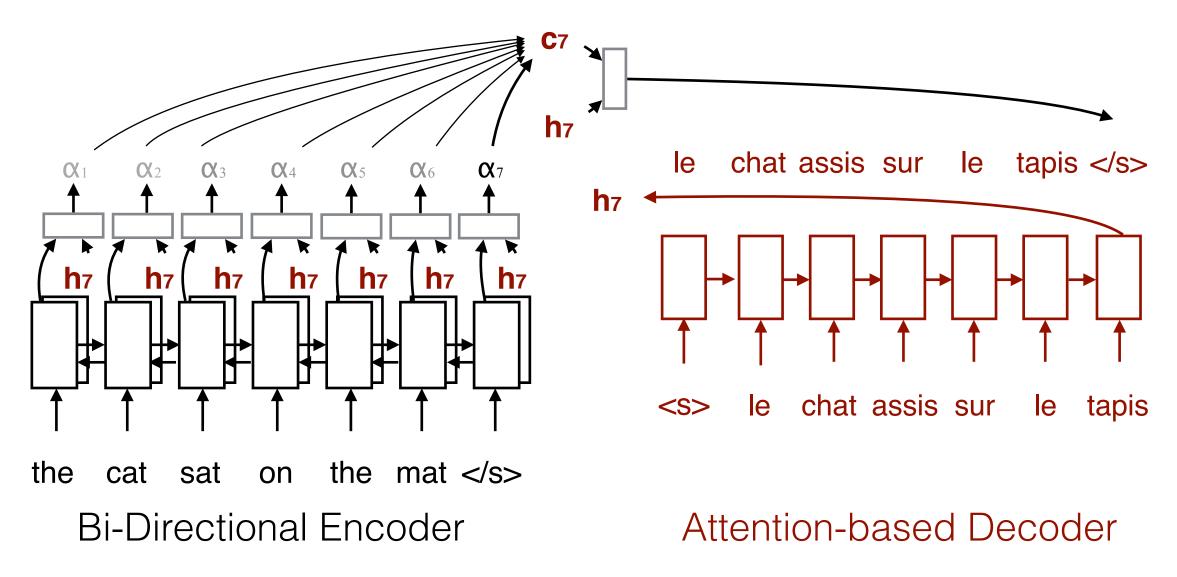
89688: Statistical Machine Translation

NMT: Making it Work

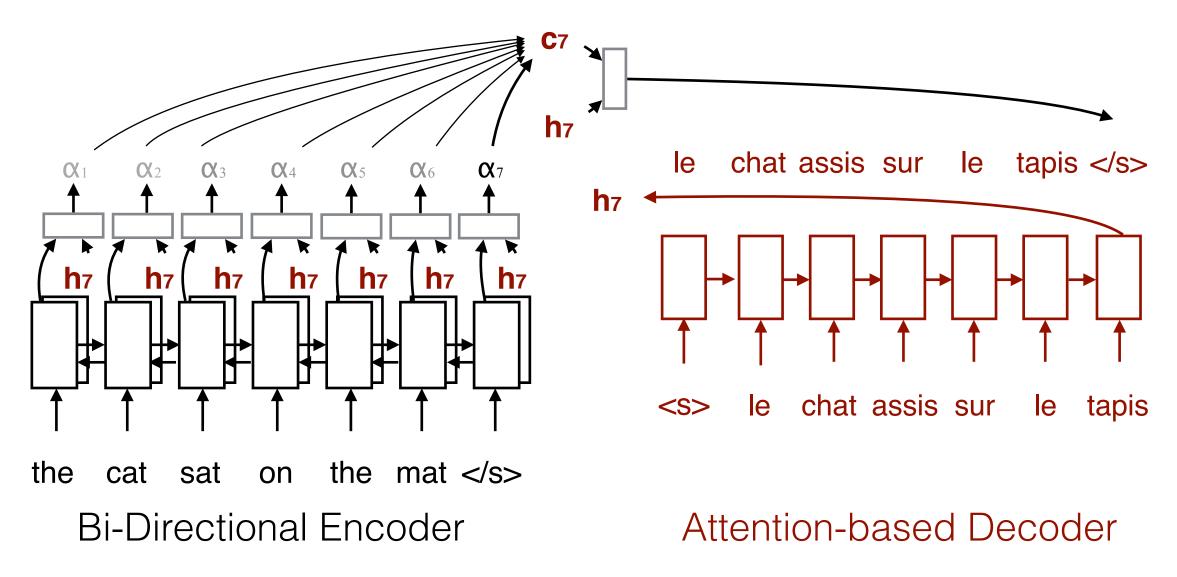
Roee Aharoni Computer Science Department Bar Ilan University

Based in part on slides by Rico Sennrich

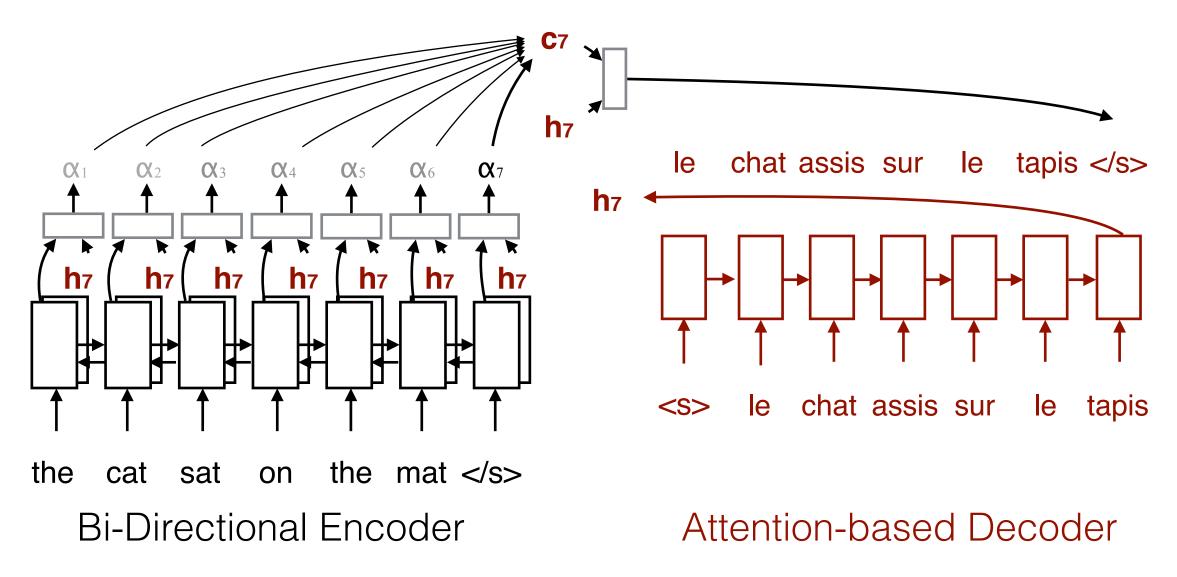
June 2020



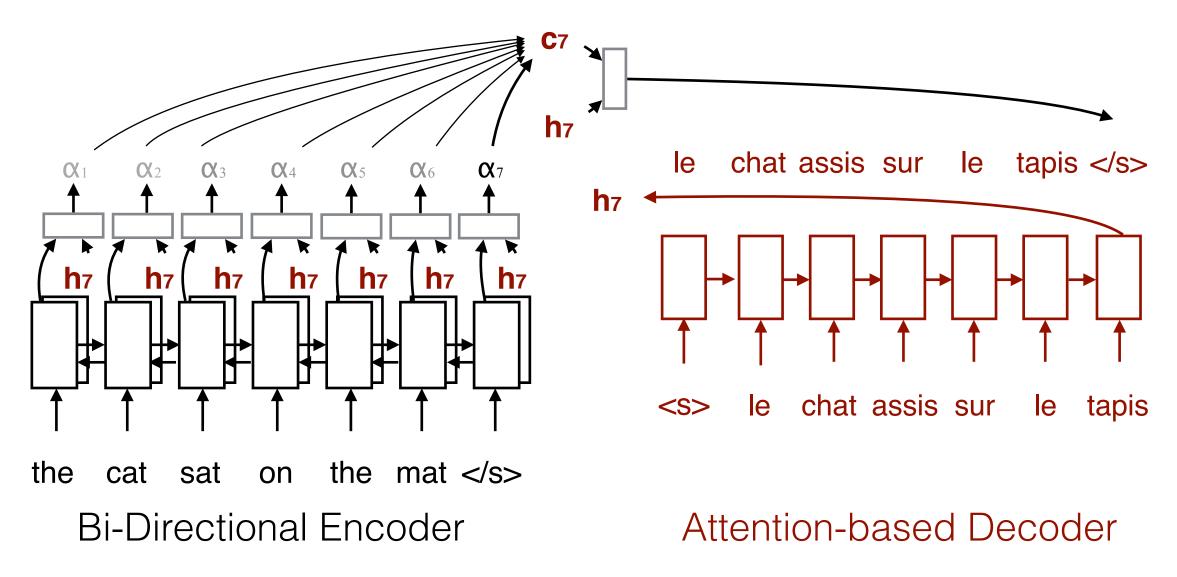
 Neural machine translation (NMT) has strong advantages:



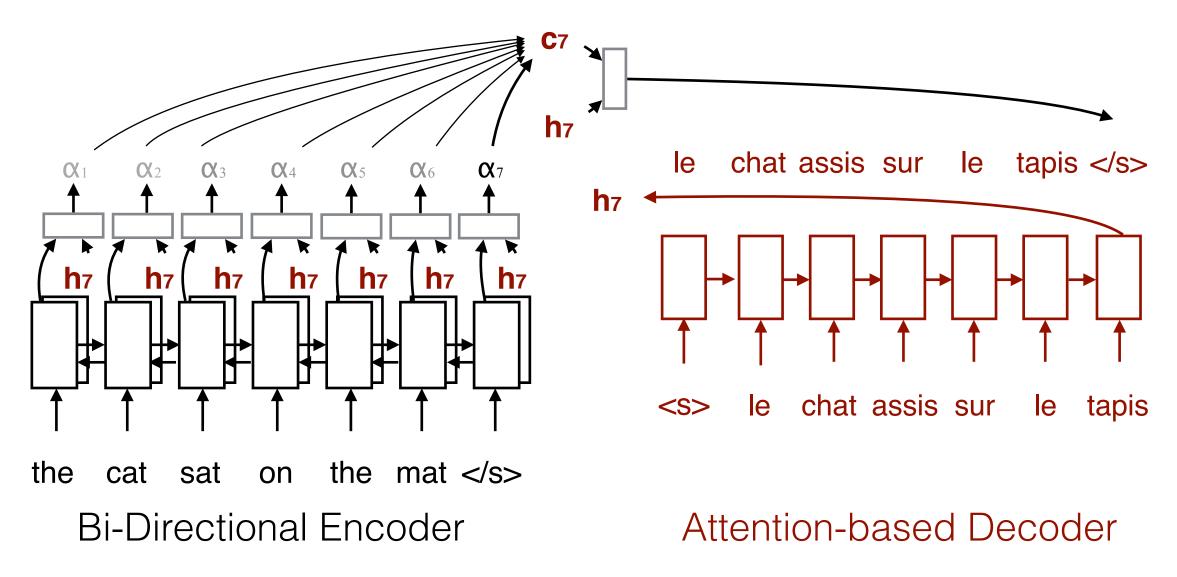
- Neural machine translation (NMT) has strong advantages:
 - Simple to train "end-to-end"



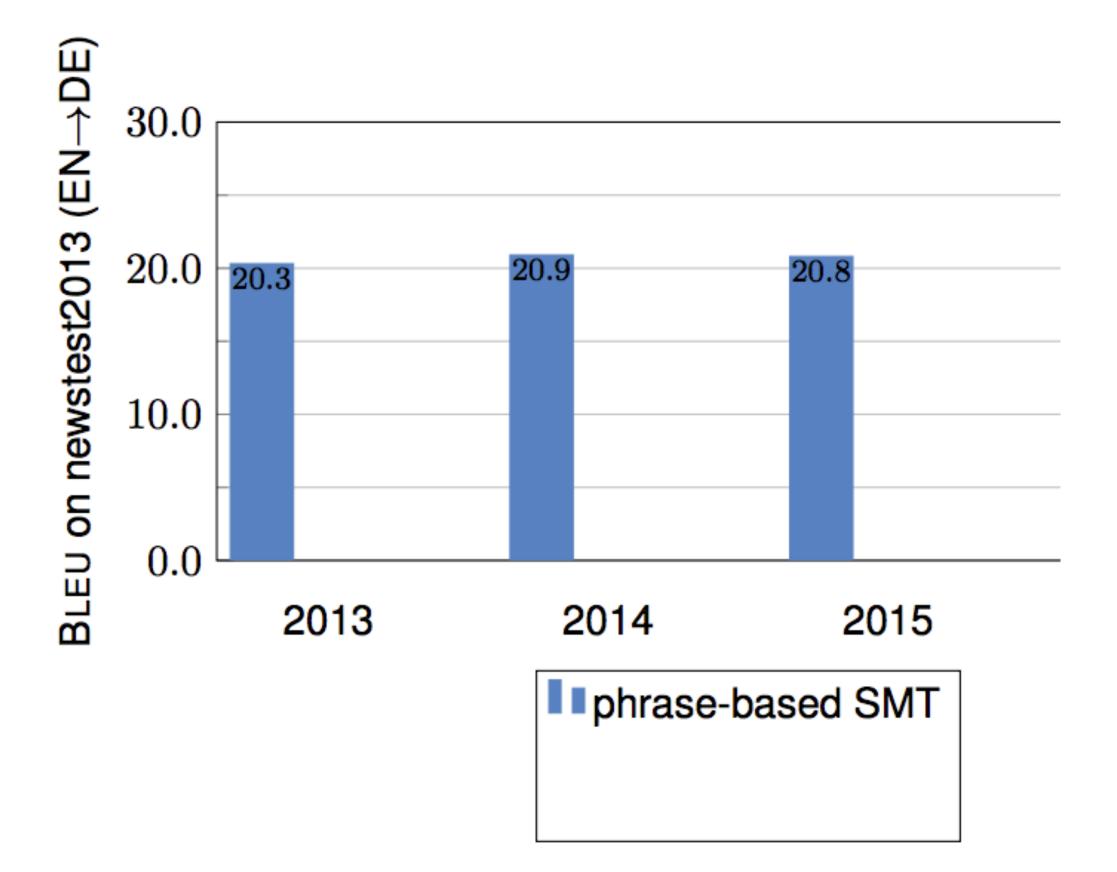
- Neural machine translation (NMT) has strong advantages:
 - Simple to train "end-to-end"
 - Fully context-aware



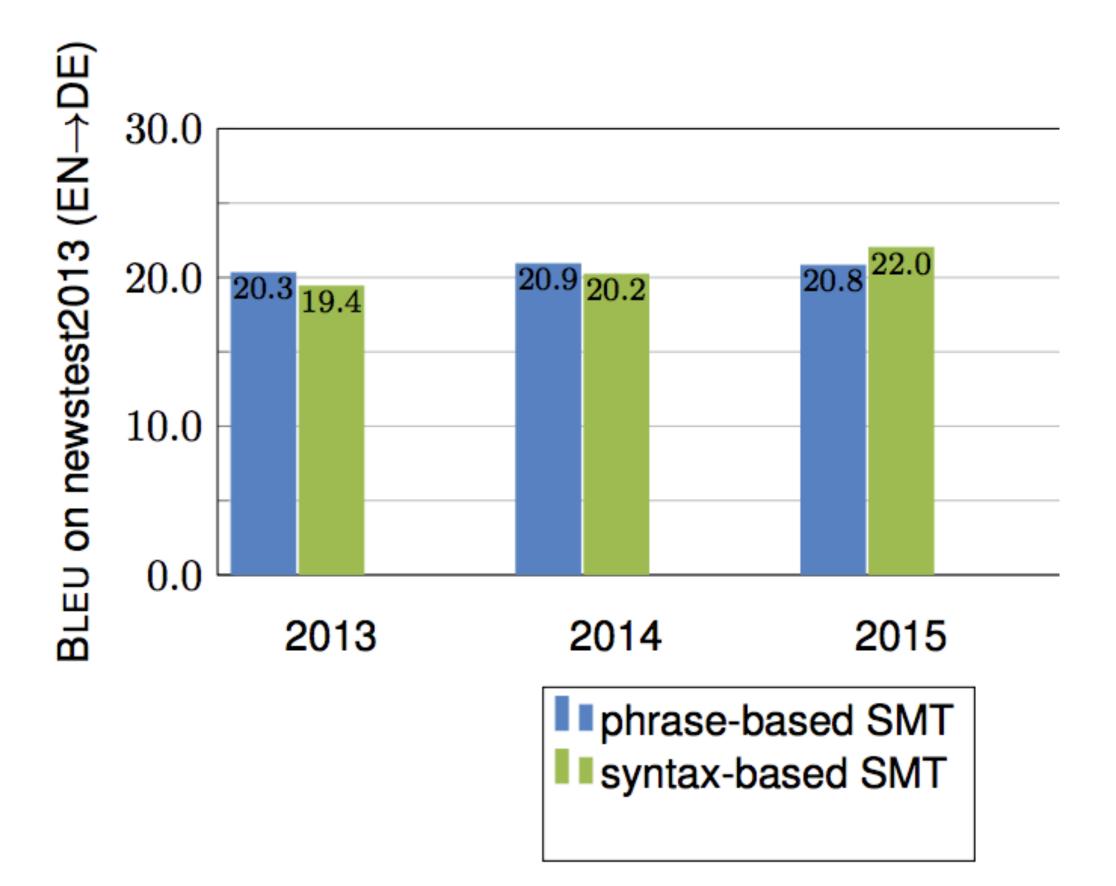
- Neural machine translation (NMT) has strong advantages:
 - Simple to train "end-to-end"
 - Fully context-aware
- But how does it perform?



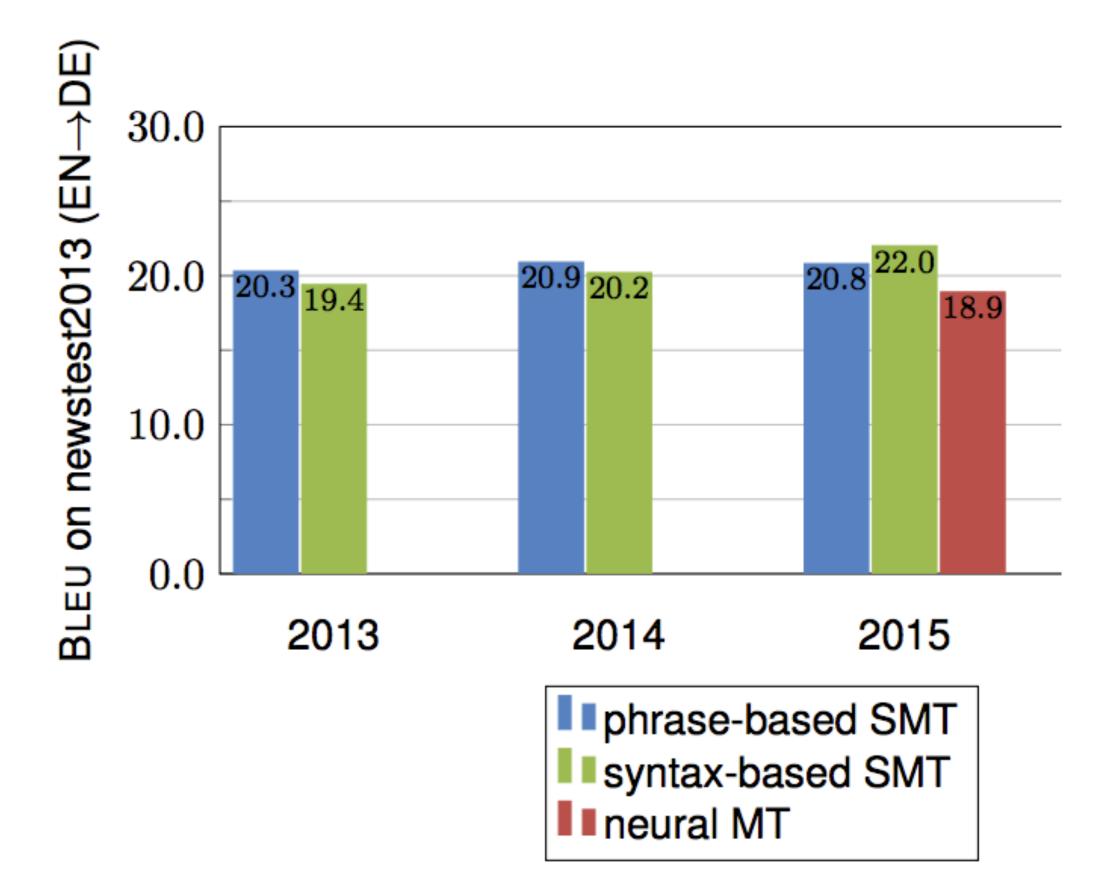
Main benchmark for MT



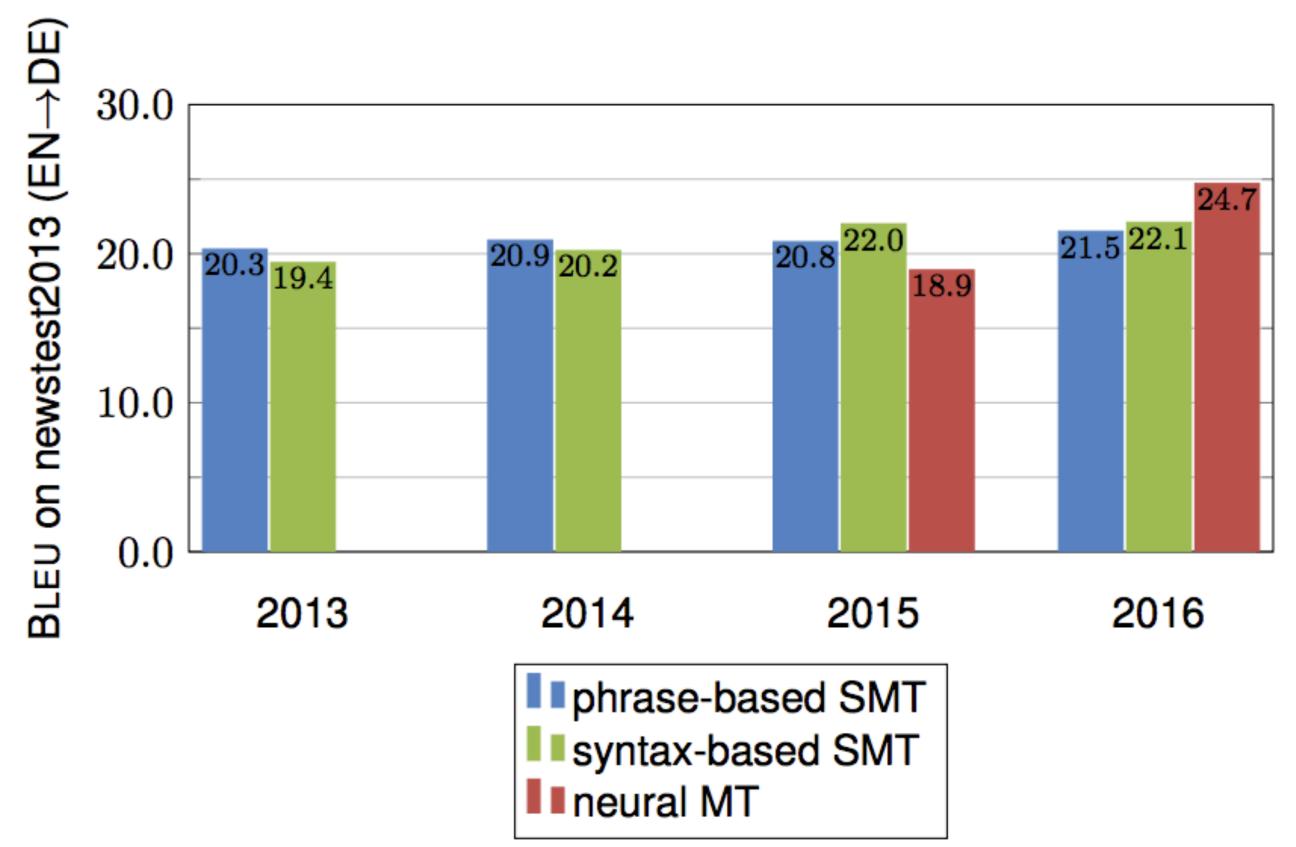
- Main benchmark for MT
- 2015 first time a syntaxbased system "wins"

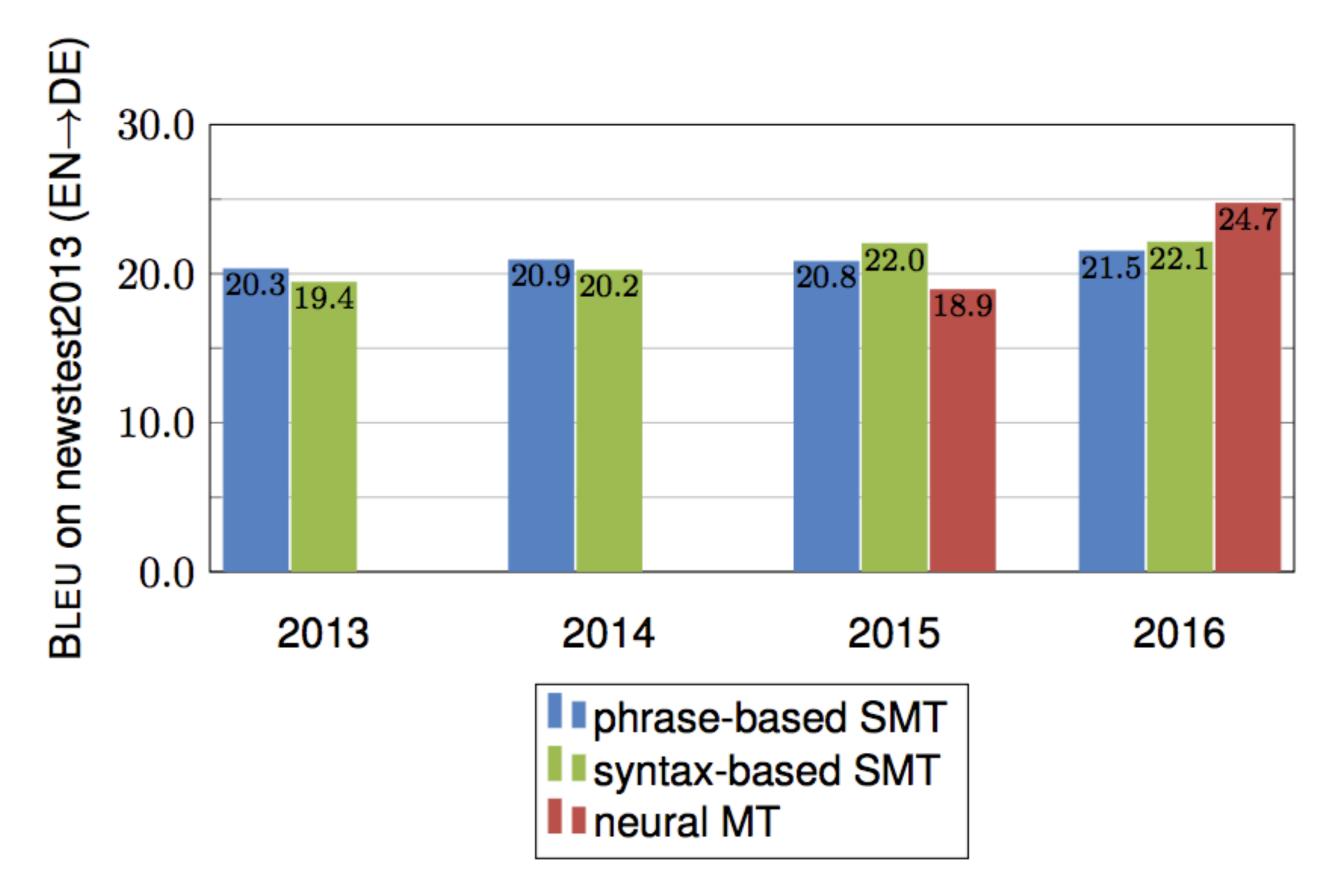


- Main benchmark for MT
- 2015 first time a syntaxbased system "wins"
- Also 2015 First time an NMT system (MILA) competes

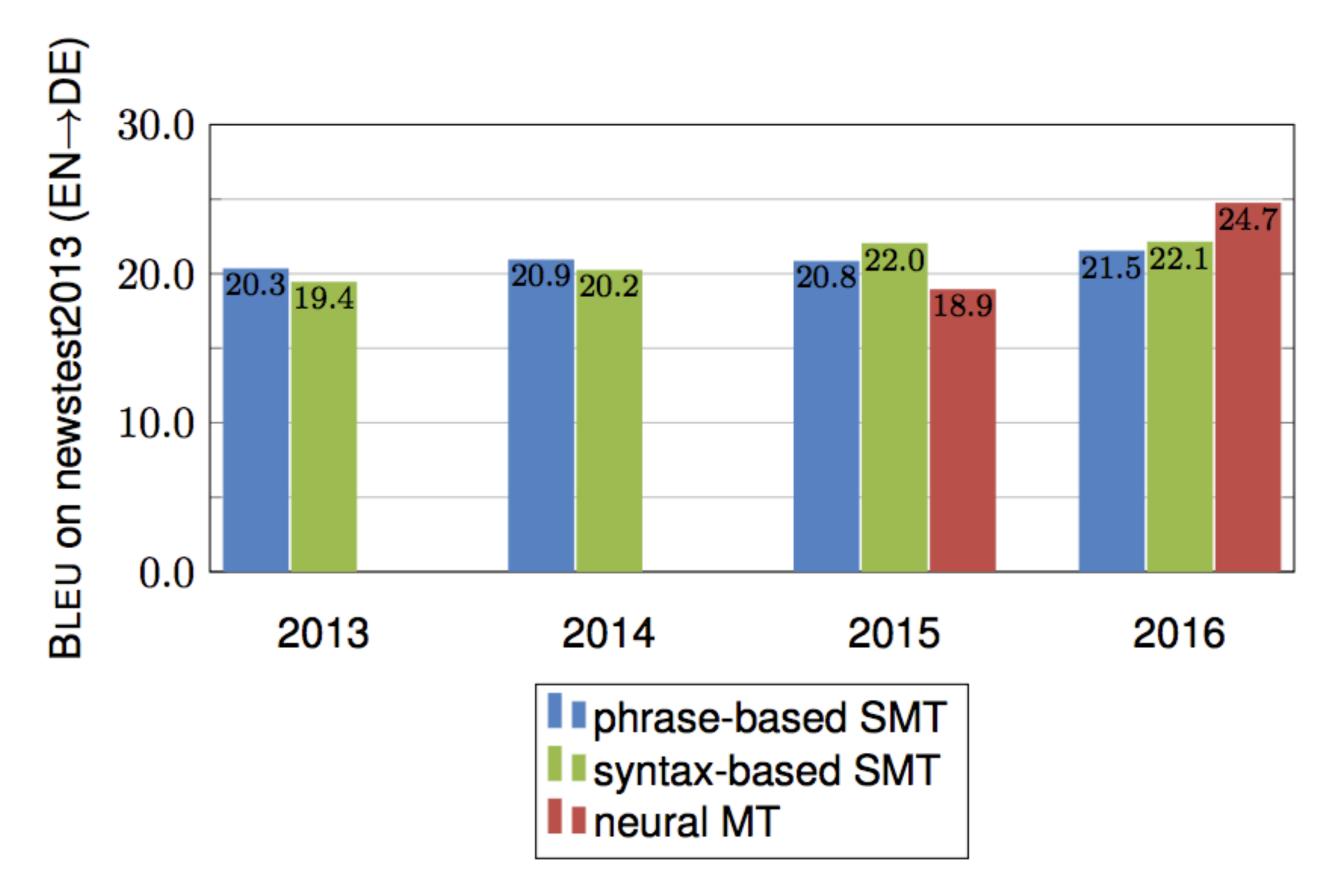


- Main benchmark for MT
- 2015 first time a syntaxbased system "wins"
- Also 2015 First time an NMT system (MILA) competes
- 2016 NMT system wins!
 (Edinburgh)

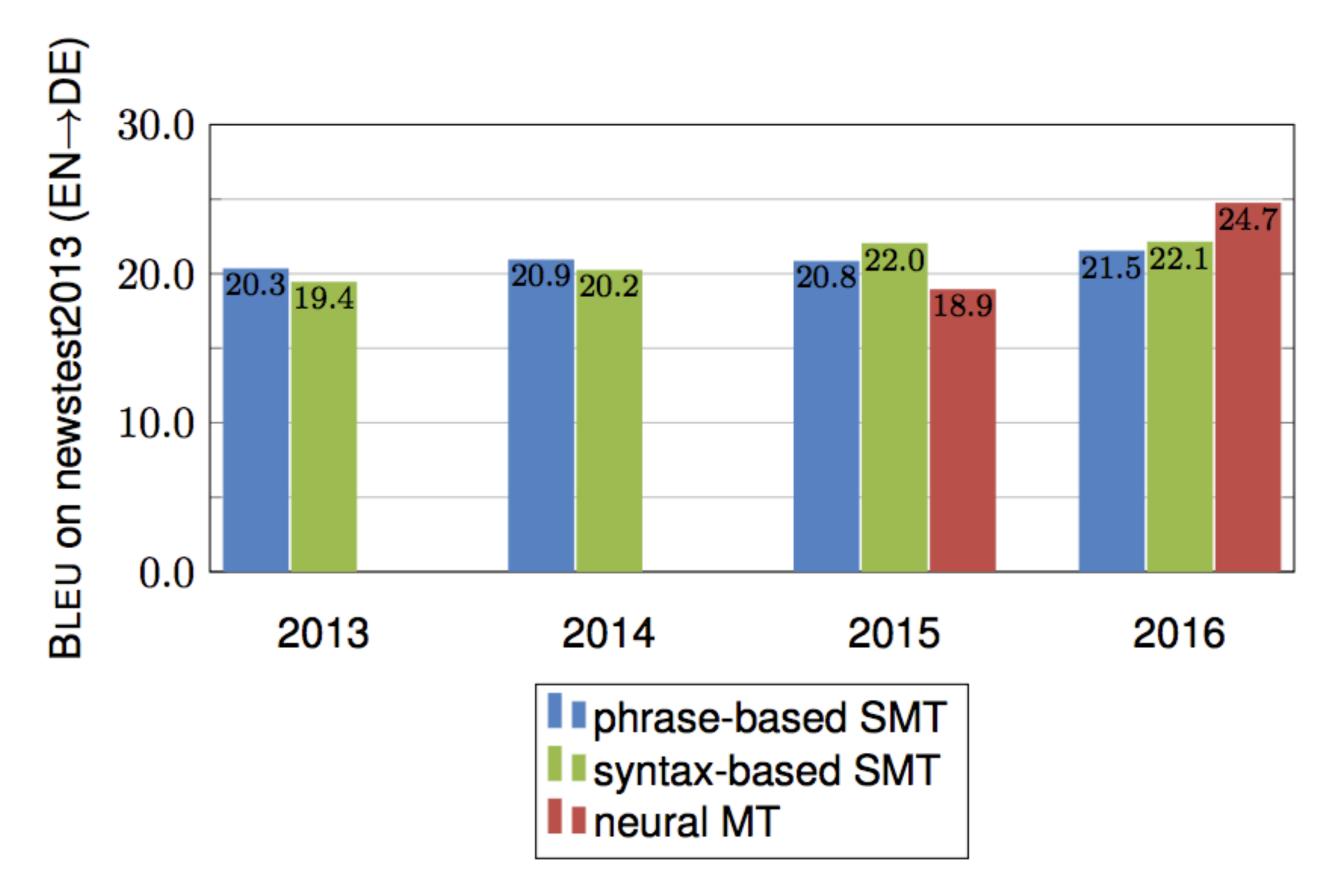




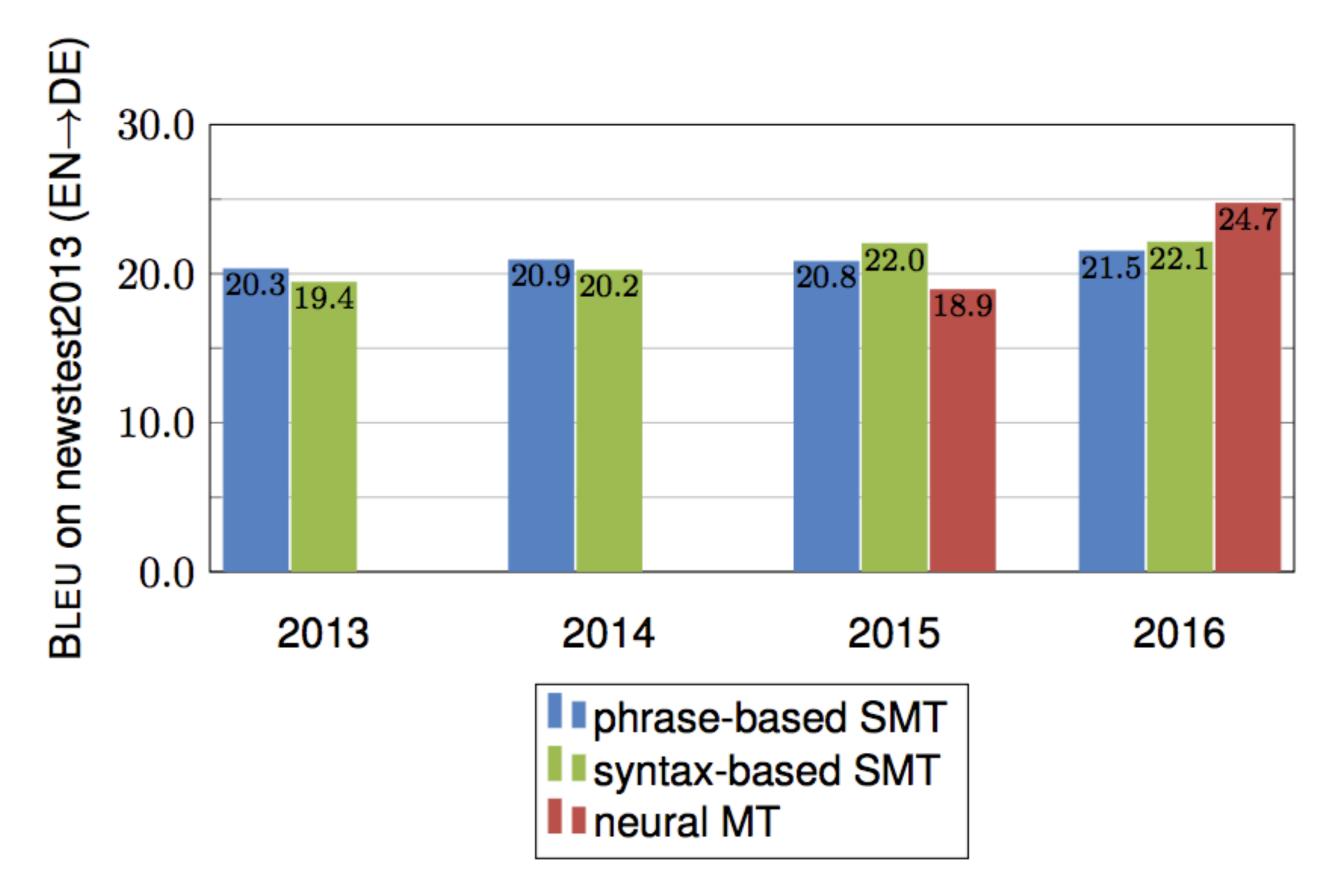
Several important methods
 were introduced in 2015-2016
 to make NMT outperform PBMT



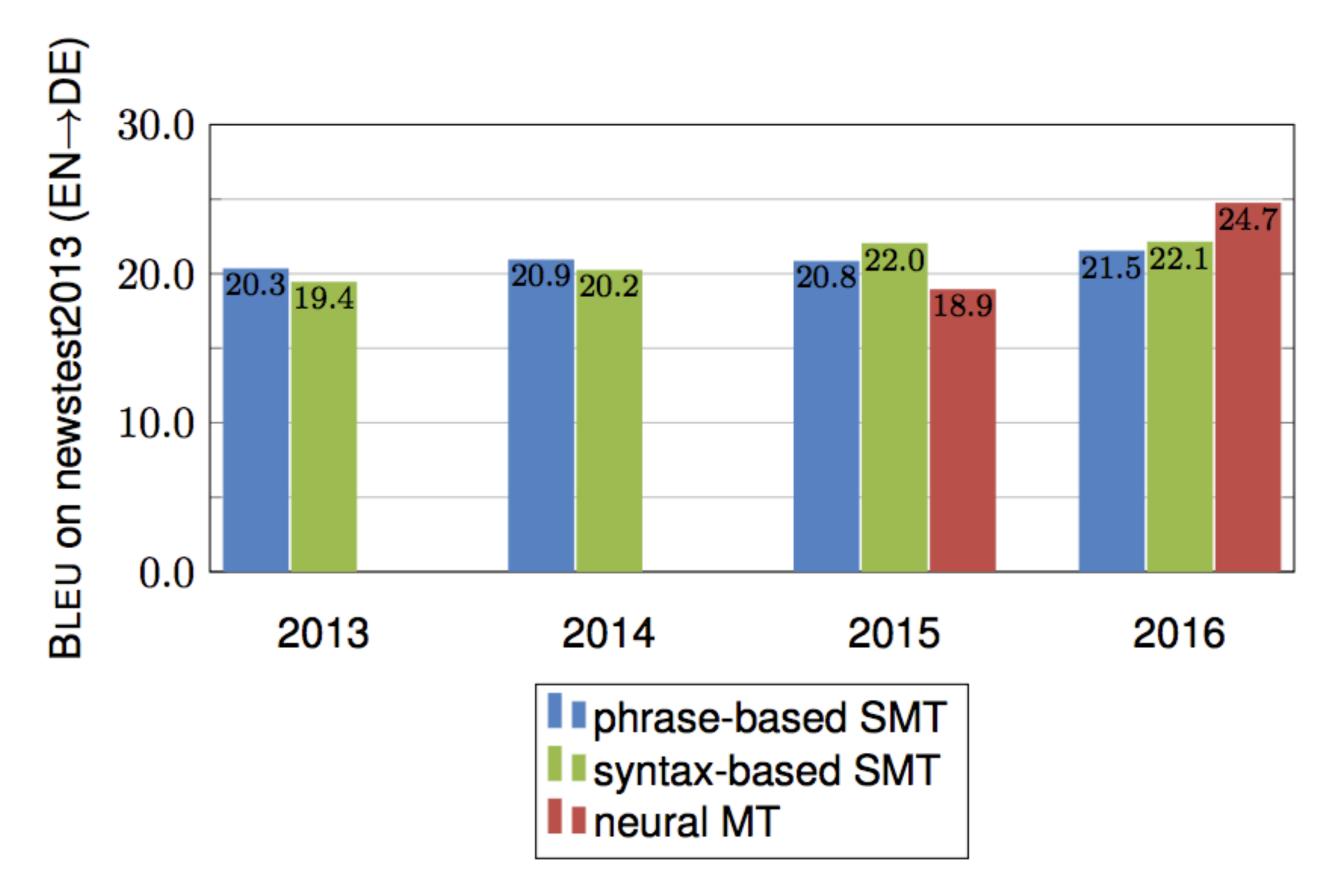
- Several important methods
 were introduced in 2015-2016
 to make NMT outperform PBMT
- Main issues to address:



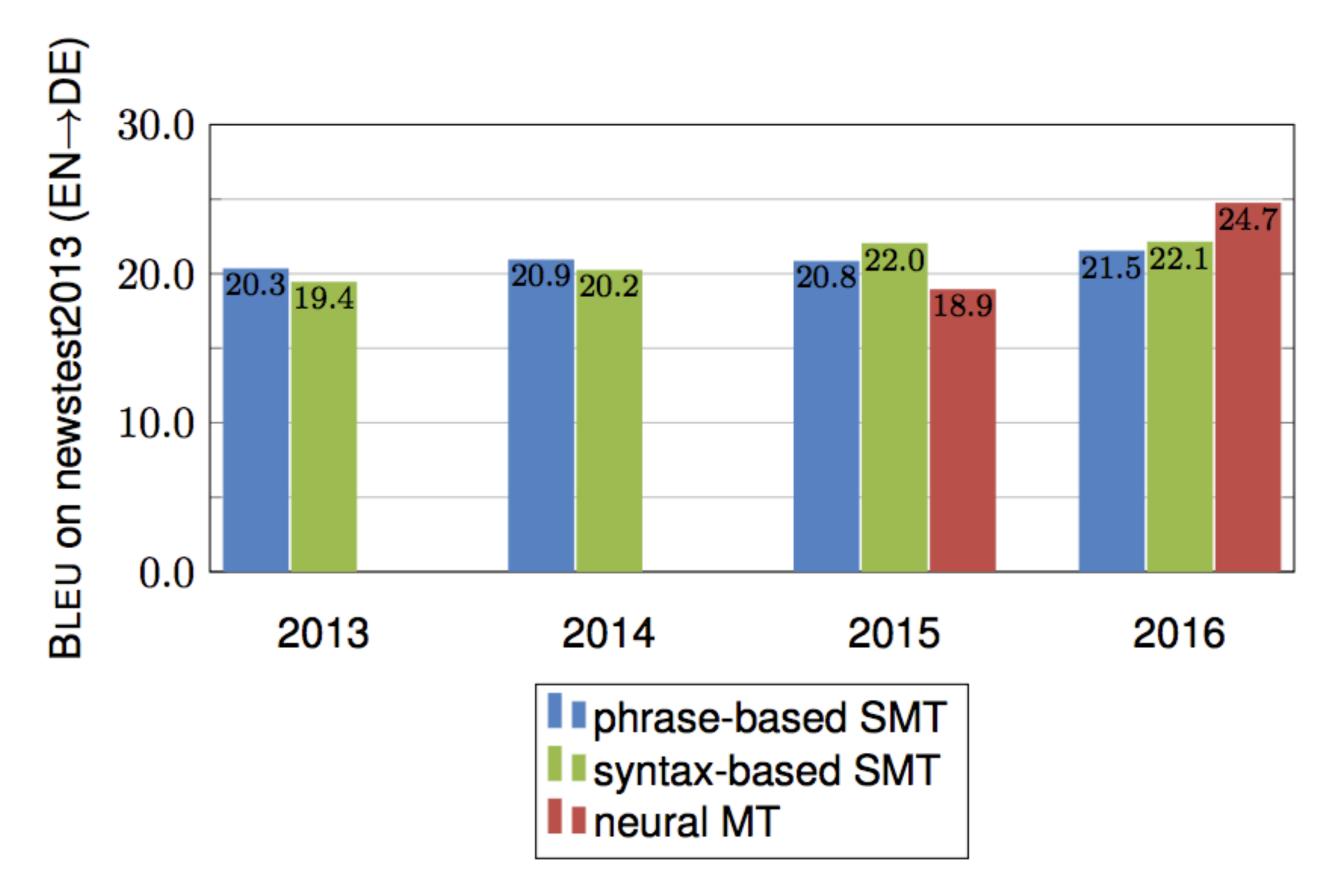
- Several important methods
 were introduced in 2015-2016
 to make NMT outperform PBMT
- Main issues to address:
 - Handling large vocabularies



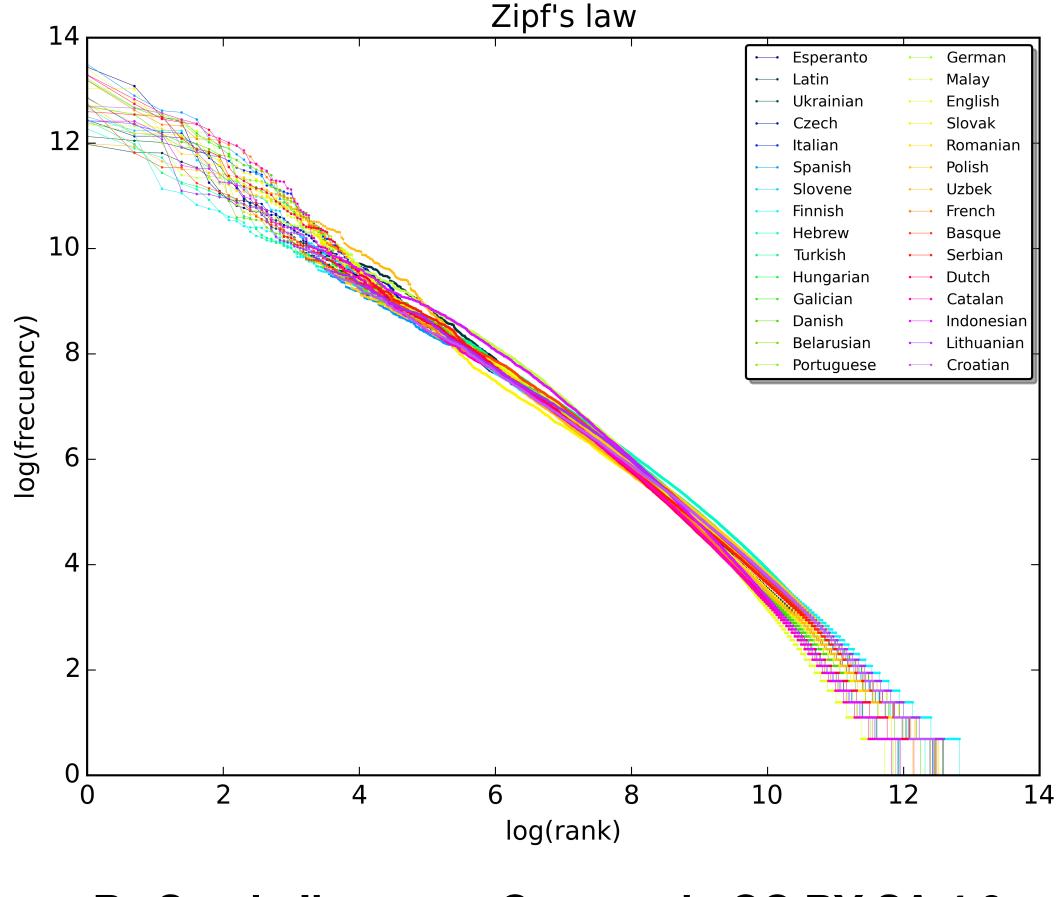
- Several important methods were introduced in 2015-2016 to make NMT outperform PBMT
- Main issues to address:
 - Handling large vocabularies
 - Using unlabelled data ("LM")



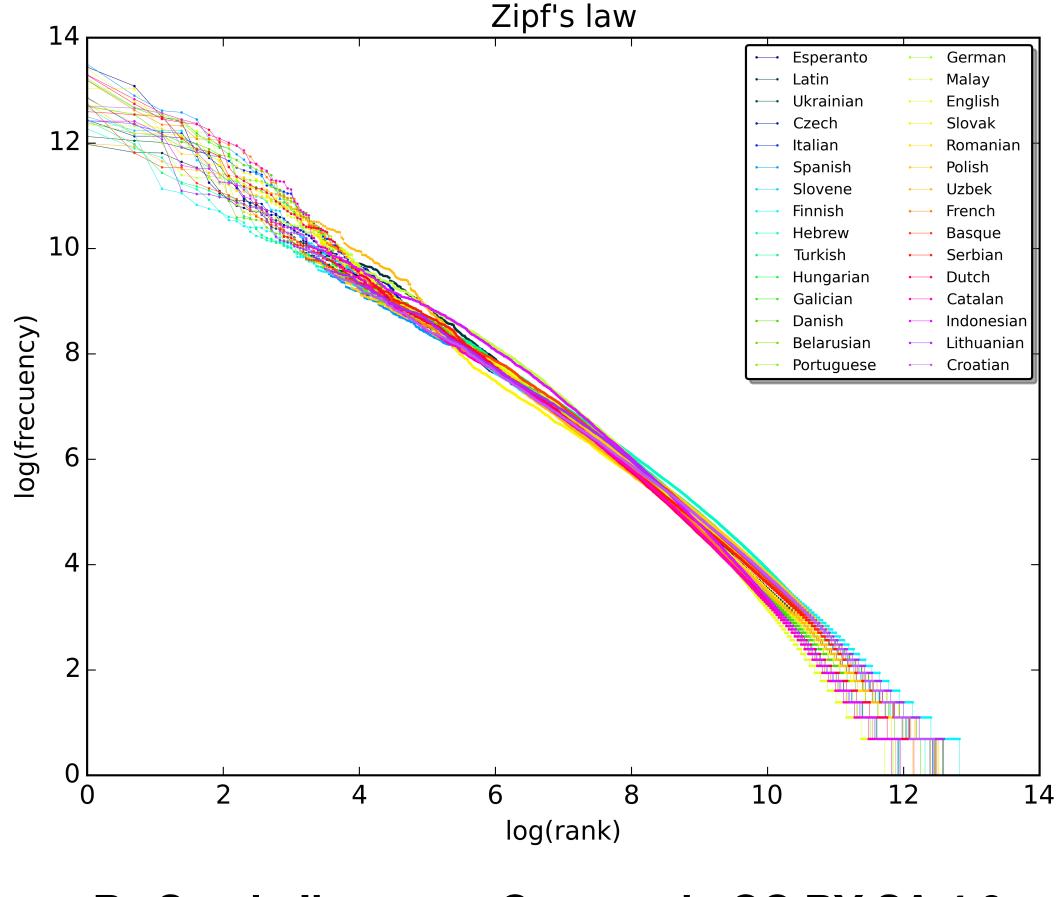
- Several important methods were introduced in 2015-2016 to make NMT outperform PBMT
- Main issues to address:
 - Handling large vocabularies
 - Using unlabelled data ("LM")
- We will discuss both



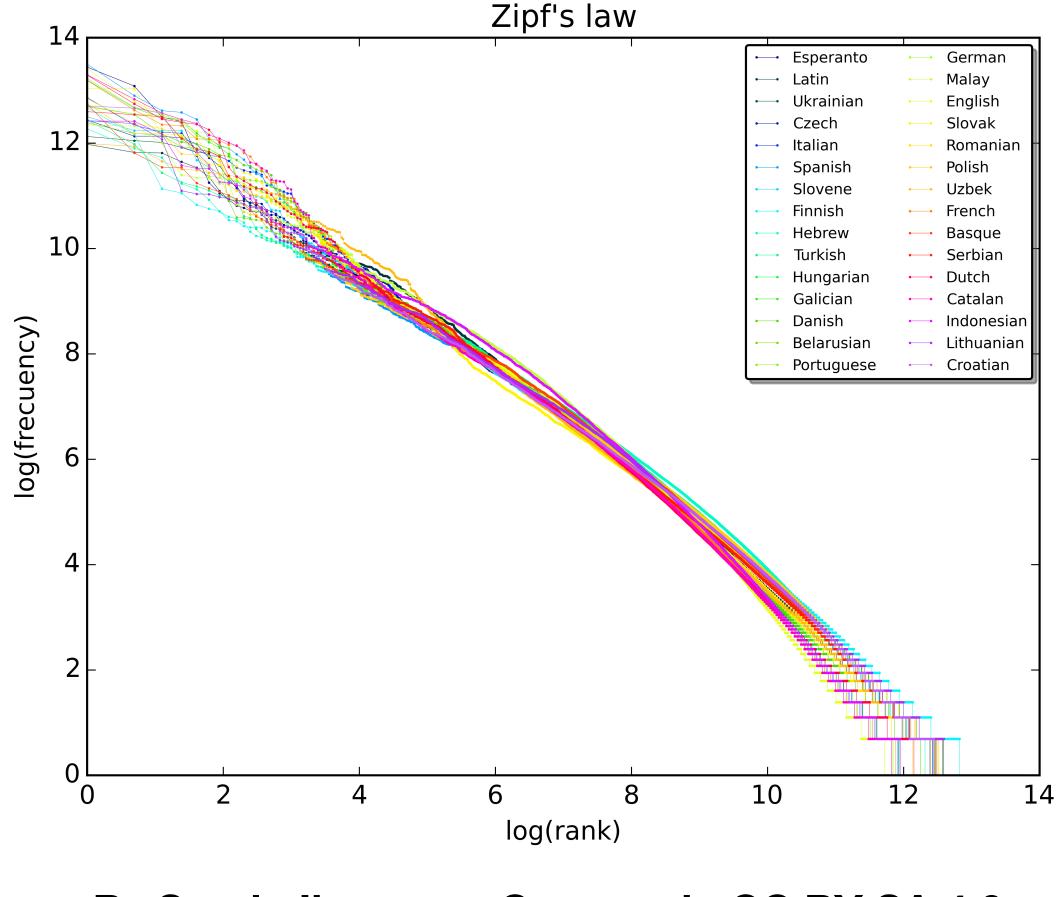
Natural language is diverse



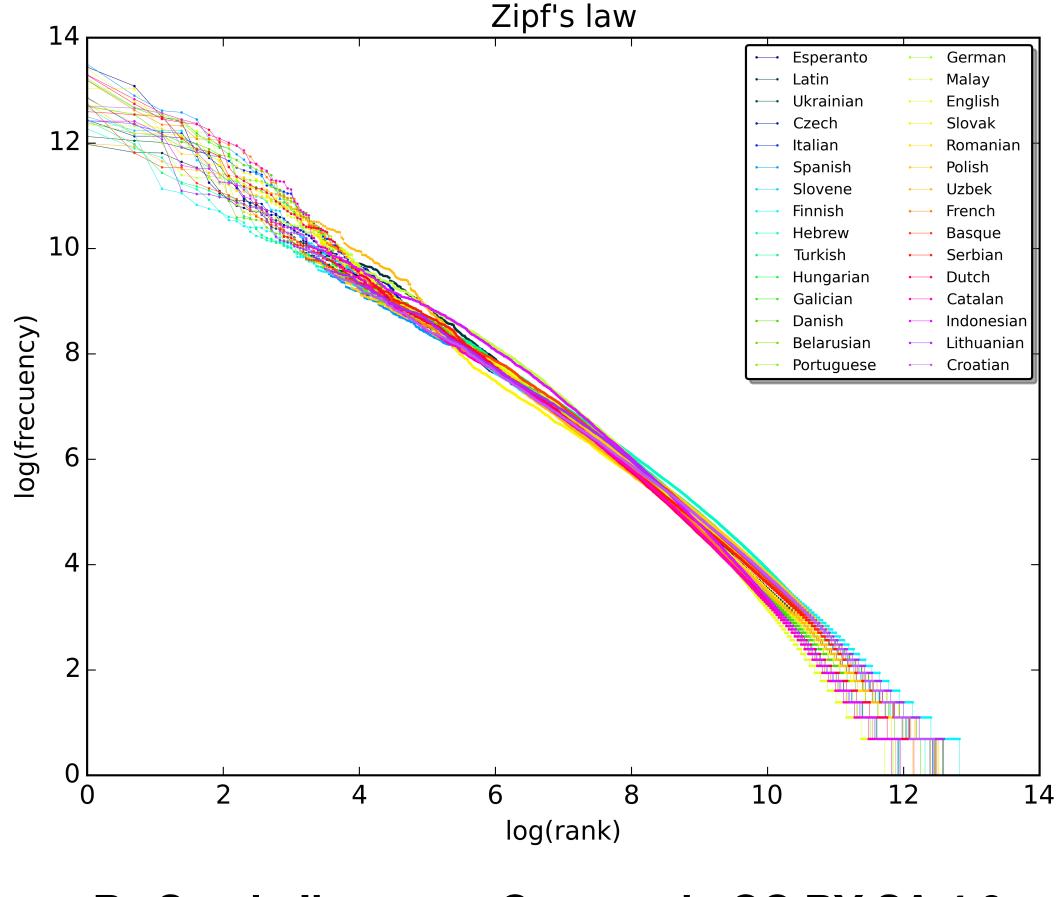
- Natural language is diverse
- We need to cover both common words and rare words



- Natural language is diverse
- We need to cover both common words and rare words
 - Using a small vocabulary (top k words) - low coverage, many unknown words



- Natural language is diverse
- We need to cover both common words and rare words
 - Using a small vocabulary (top k words) - low coverage, many unknown words
 - Using a large vocabulary sparse, requires more parameters - slow



 Unknown words are inevitable - new words are always invented around us:

 Unknown words are inevitable - new words are always invented around us:

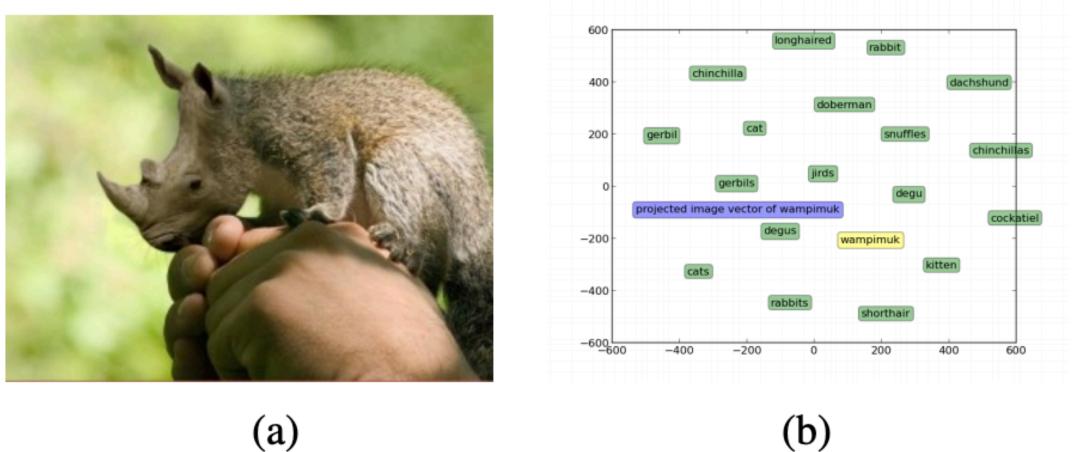


Figure 1: A potential *wampimuk* (a) together with its projection onto the linguistic space (b).

from Lazaridou et al. 2014

- Unknown words are inevitable new words are always invented around us:
- We can't use an inifinite vocabulary...

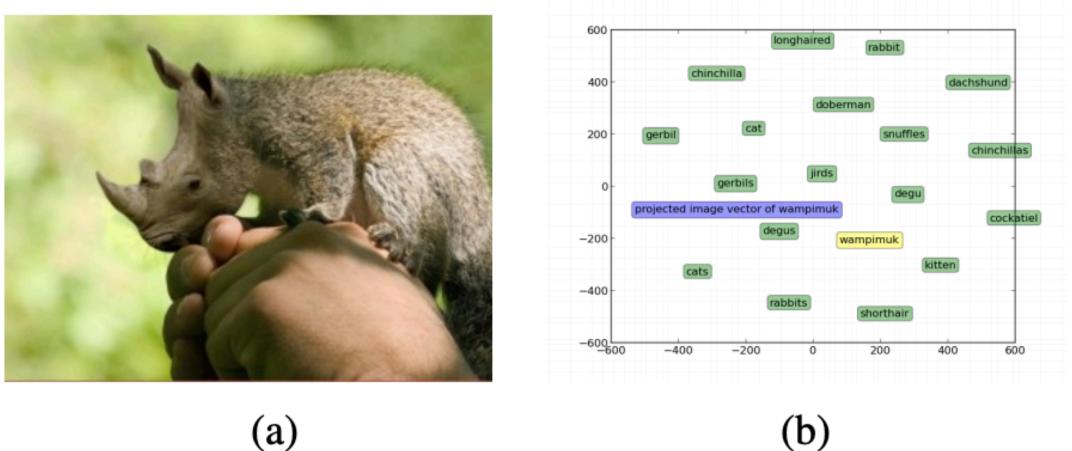


Figure 1: A potential *wampimuk* (a) together with its projection onto the linguistic space (b).

from Lazaridou et al. 2014

- Unknown words are inevitable new words are always invented around us:
- We can't use an inifinite vocabulary...
- "UNK" token replace each unknown word with an "UNK" symbol

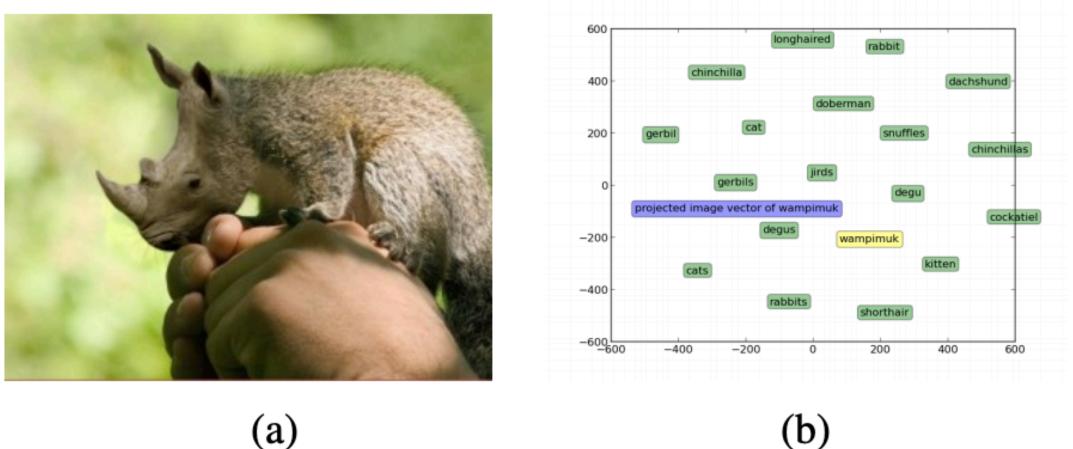


Figure 1: A potential *wampimuk* (a) together with its projection onto the linguistic space (b).

from Lazaridou et al. 2014

- Unknown words are inevitable new words are always invented around us:
- We can't use an inifinite vocabulary...
- "UNK" token replace each unknown word with an "UNK" symbol
 - Good: Enables to encode any sentence

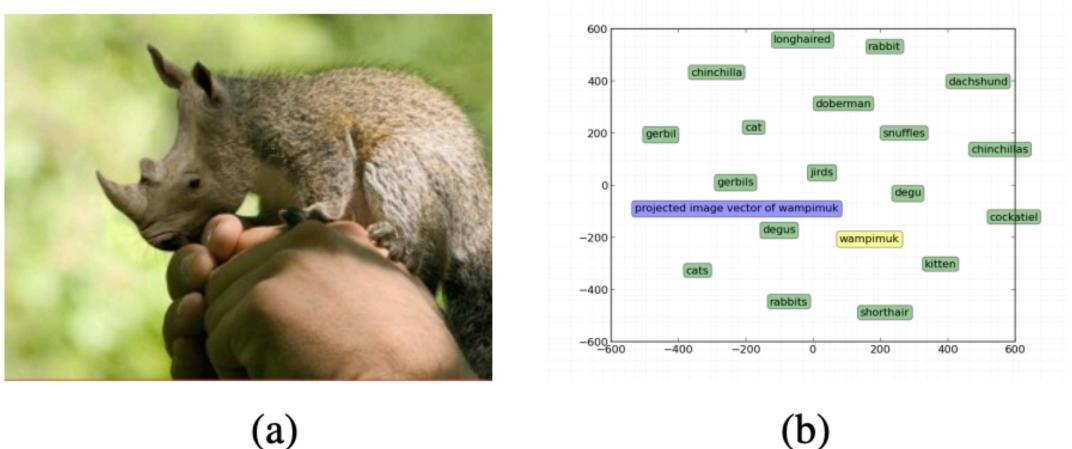


Figure 1: A potential *wampimuk* (a) together with its projection onto the linguistic space (b).

from Lazaridou et al. 2014

- Unknown words are inevitable new words are always invented around us:
- We can't use an inifinite vocabulary...
- "UNK" token replace each unknown word with an "UNK" symbol
 - Good: Enables to encode any sentence
 - Bad: Throws away information...

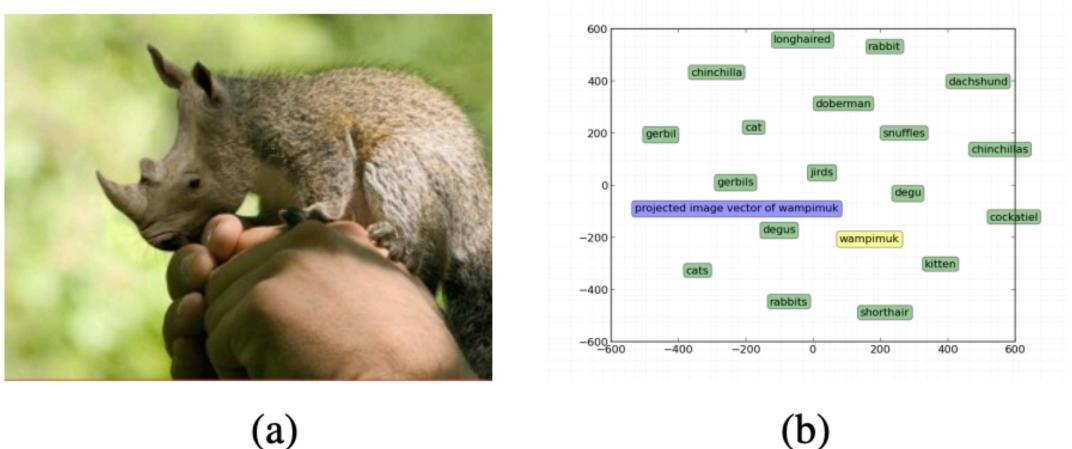


Figure 1: A potential *wampimuk* (a) together with its projection onto the linguistic space (b).

from Lazaridou et al. 2014

- Unknown words are inevitable new words are always invented around us:
- We can't use an inifinite vocabulary...
- "UNK" token replace each unknown word with an "UNK" symbol
 - Good: Enables to encode any sentence
 - Bad: Throws away information...
- How can we do better?

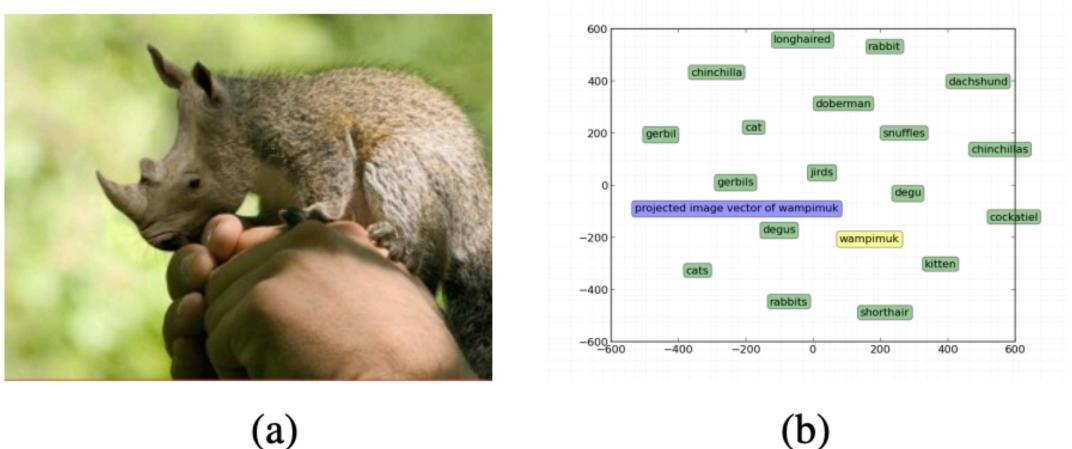
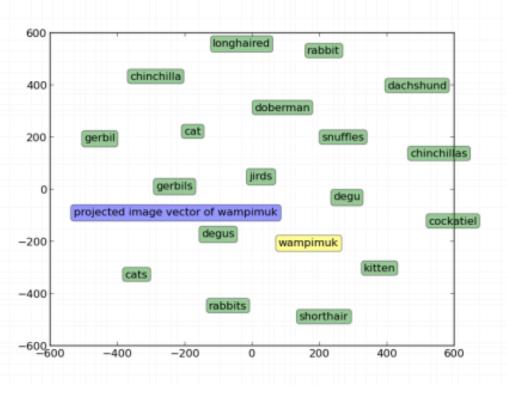


Figure 1: A potential *wampimuk* (a) together with its projection onto the linguistic space (b).

from Lazaridou et al. 2014

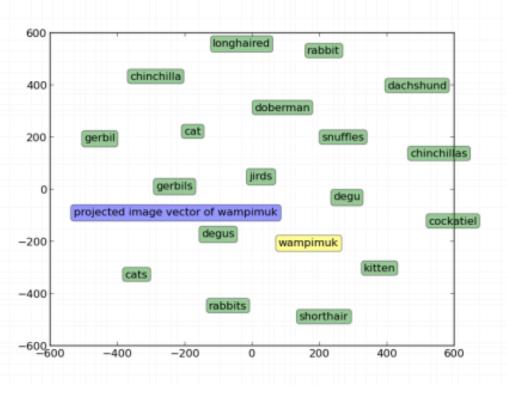


(b)

Figure 1: A potential *wampimuk* (a) together with its projection onto the linguistic space (b).

from Lazaridou et al. 2014

• An simple solution - work at the character level:

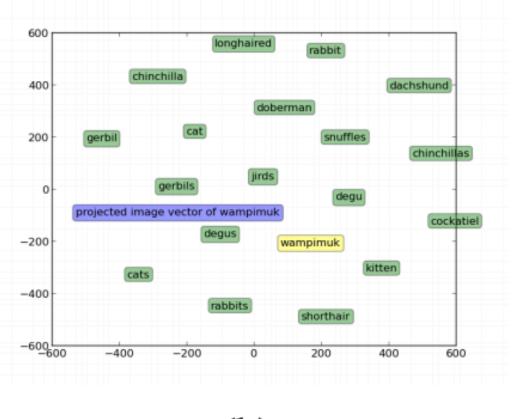


(b)

Figure 1: A potential *wampimuk* (a) together with its projection onto the linguistic space (b).

from Lazaridou et al. 2014

• An simple solution - work at the character level:



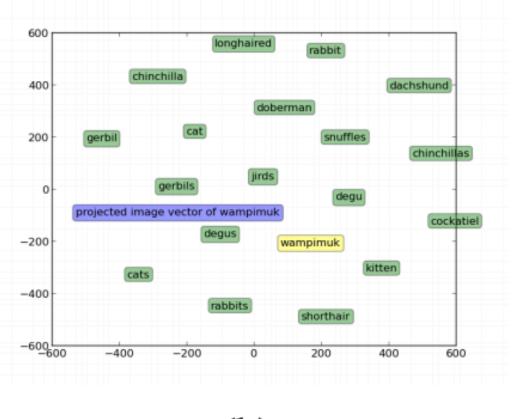
(b)

Figure 1: A potential *wampimuk* (a) together with its projection onto the linguistic space (b).

from Lazaridou et al. 2014

This is a Wampimuk in the wild.

- An simple solution work at the character level:
 - No unknown words! Models morphology



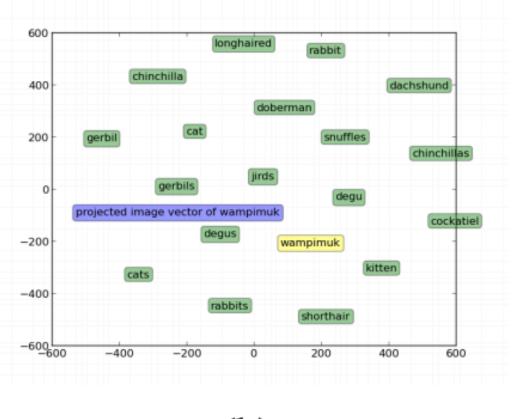
(b)

Figure 1: A potential *wampimuk* (a) together with its projection onto the linguistic space (b).

from Lazaridou et al. 2014

This is a Wampimuk in the wild.

- An simple solution work at the character level:
 - No unknown words! Models morphology
 - Very long sequences slow...



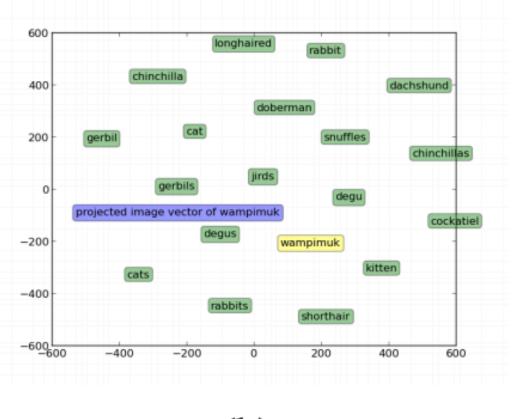
(b)

Figure 1: A potential *wampimuk* (a) together with its projection onto the linguistic space (b).

from Lazaridou et al. 2014

This is a Wampimuk in the wild.

- An simple solution work at the character level:
 - No unknown words! Models morphology
 - Very long sequences slow...
- How do we model this?



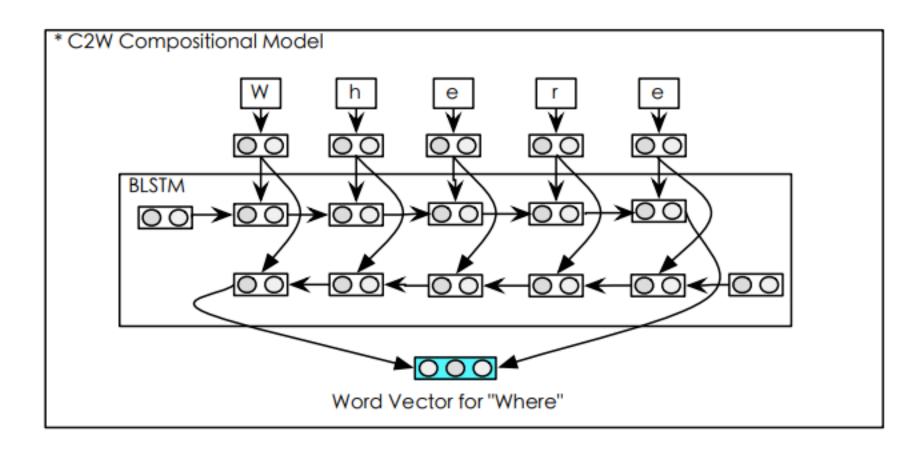
(b)

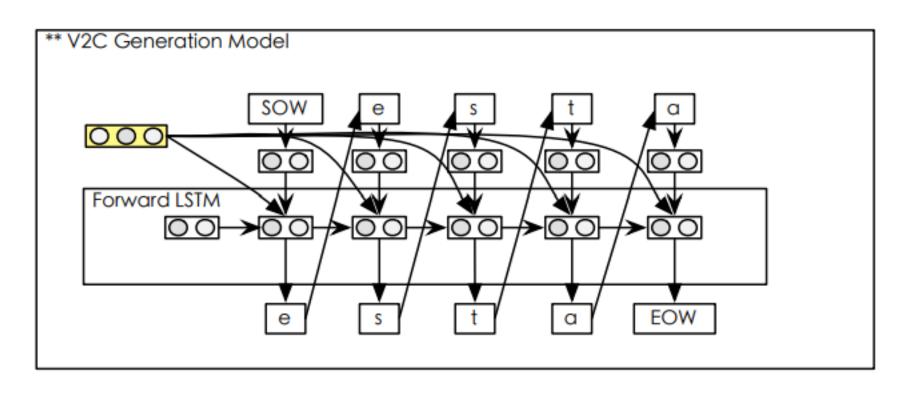
Figure 1: A potential *wampimuk* (a) together with its projection onto the linguistic space (b).

from Lazaridou et al. 2014

This is a Wampimuk in the wild .

- An simple solution work at the character level:
 - No unknown words! Models morphology
 - Very long sequences slow...
- How do we model this?
 - <u>Ling et al. 2015</u> Char2Vec and Vec2Char with LSTMs





This_is_a_Wampimuk_in_the_wild_.

- An simple solution work at the character level:
 - No unknown words! Models morphology
 - Very long sequences slow...
- How do we model this?
 - <u>Ling et al. 2015</u> Char2Vec and Vec2Char with LSTMs
 - <u>Costa Jussa et al 2016</u> using word-level convolutions (faster)

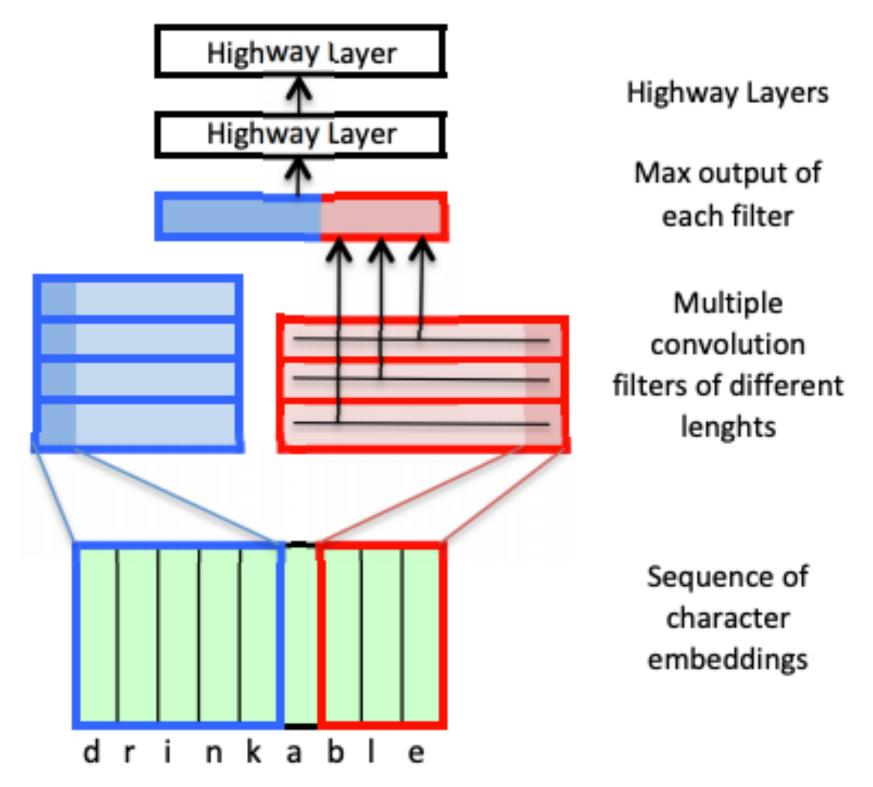
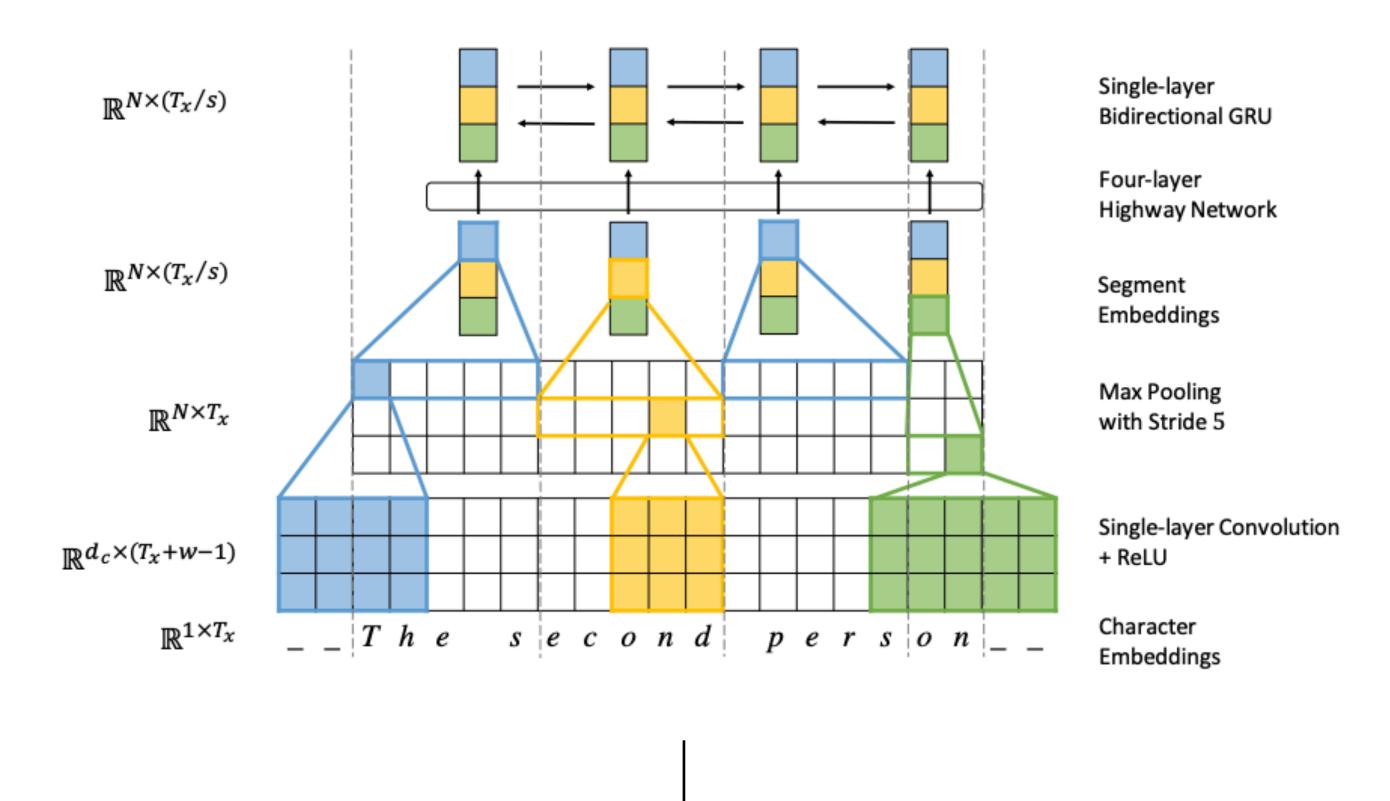


Figure 1: Character-based word embedding

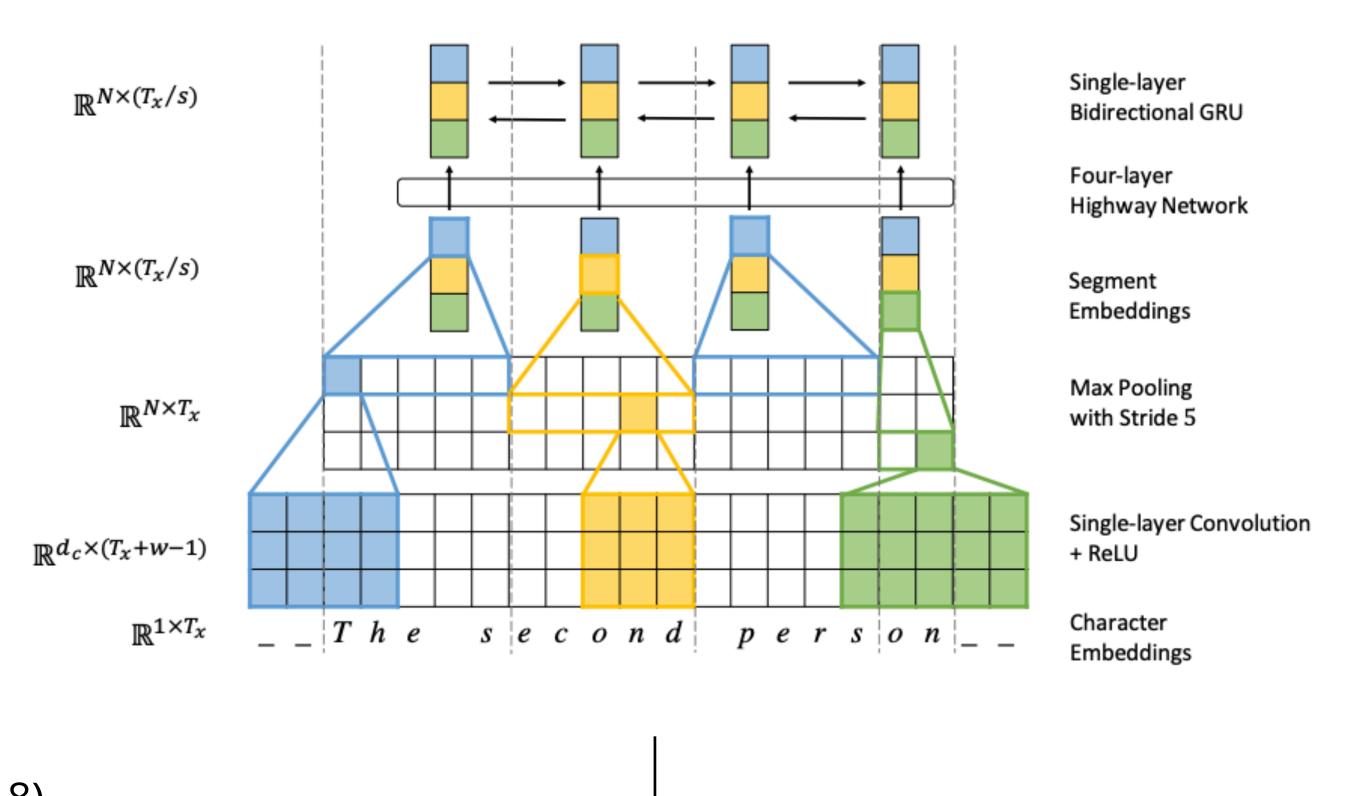
This_is_a_Wampimuk_in_the_wild_.

- An simple solution work at the character level:
 - No unknown words! Models morphology
 - Very long sequences slow...
- How do we model this?
 - <u>Ling et al. 2015</u> Char2Vec and Vec2Char with LSTMs
 - <u>Costa Jussa et al 2016</u> using word-level convolutions (faster)
 - <u>Chung et al. 2016</u>, <u>Lee et al. 2016</u> No need for word segmentation!



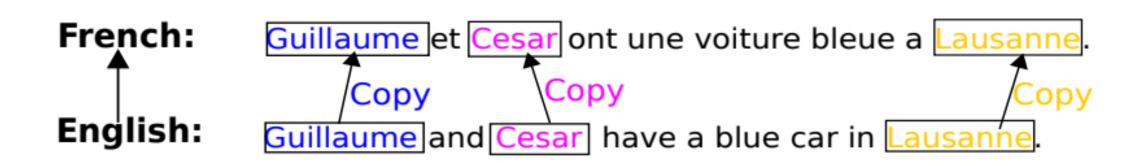
ThisisaWampimukinthewild.

- An simple solution work at the character level:
 - No unknown words! Models morphology
 - Very long sequences slow...
- How do we model this?
 - <u>Ling et al. 2015</u> Char2Vec and Vec2Char with LSTMs
 - <u>Costa Jussa et al 2016</u> using word-level convolutions (faster)
 - <u>Chung et al. 2016</u>, <u>Lee et al. 2016</u> No need for word segmentation!
- Requires **deep models** to work well (<u>Cherry et al 2018</u>)

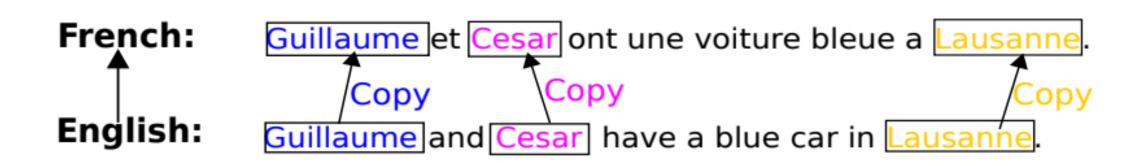


ThisisaWampimukinthewild.

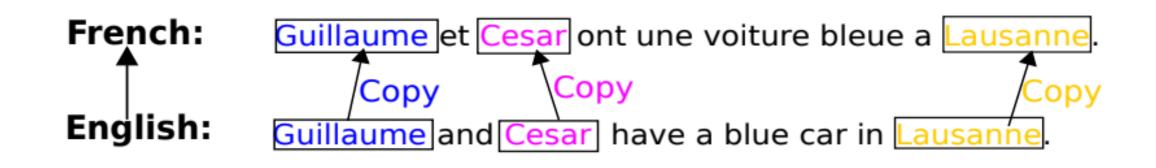
 Another solution for unknown words: "copy" them "as-is" from source

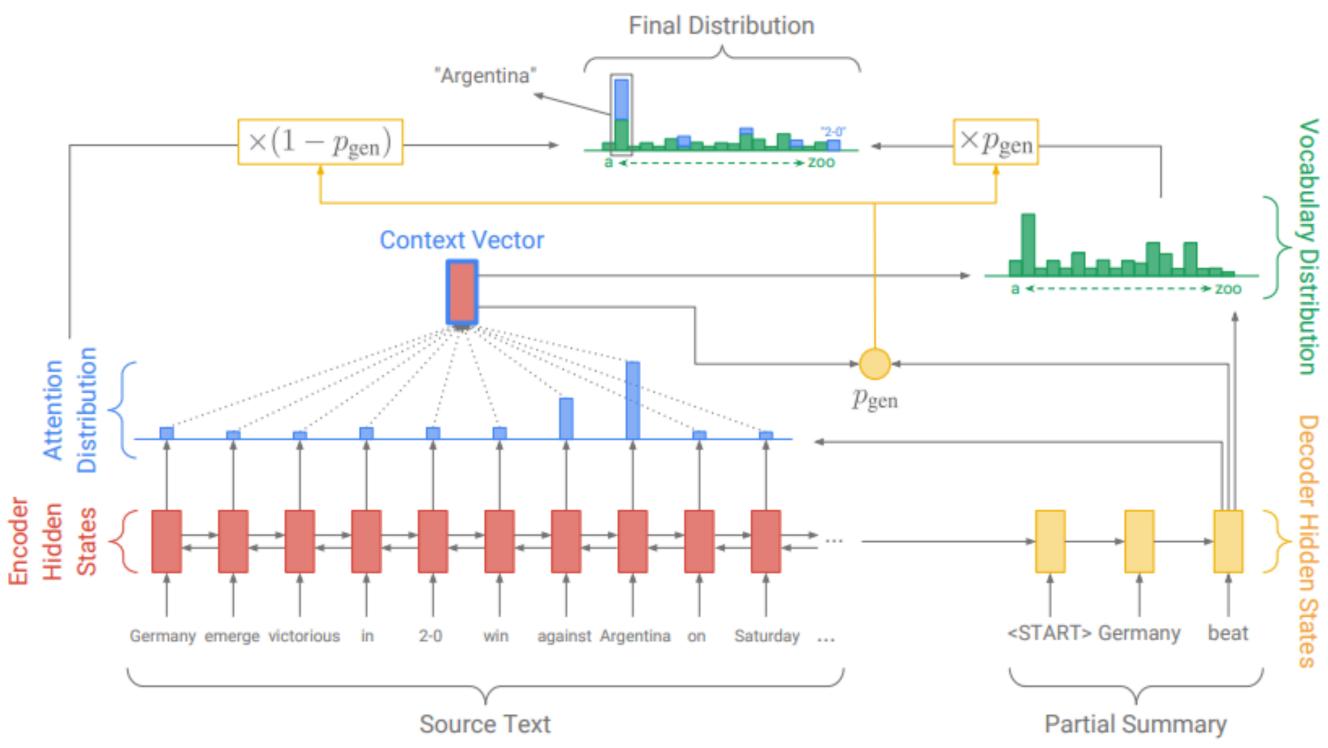


- Another solution for unknown words: "copy" them "as-is" from source
- <u>"Pointing the Unknown Words"</u> (Gulchere et al 2016)

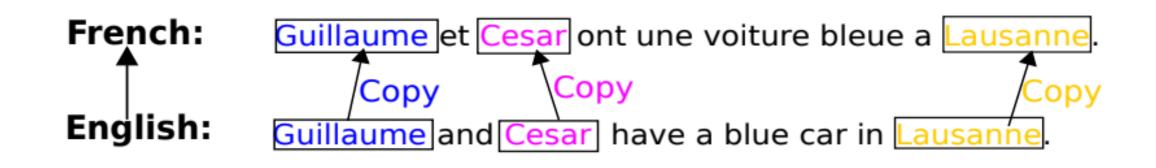


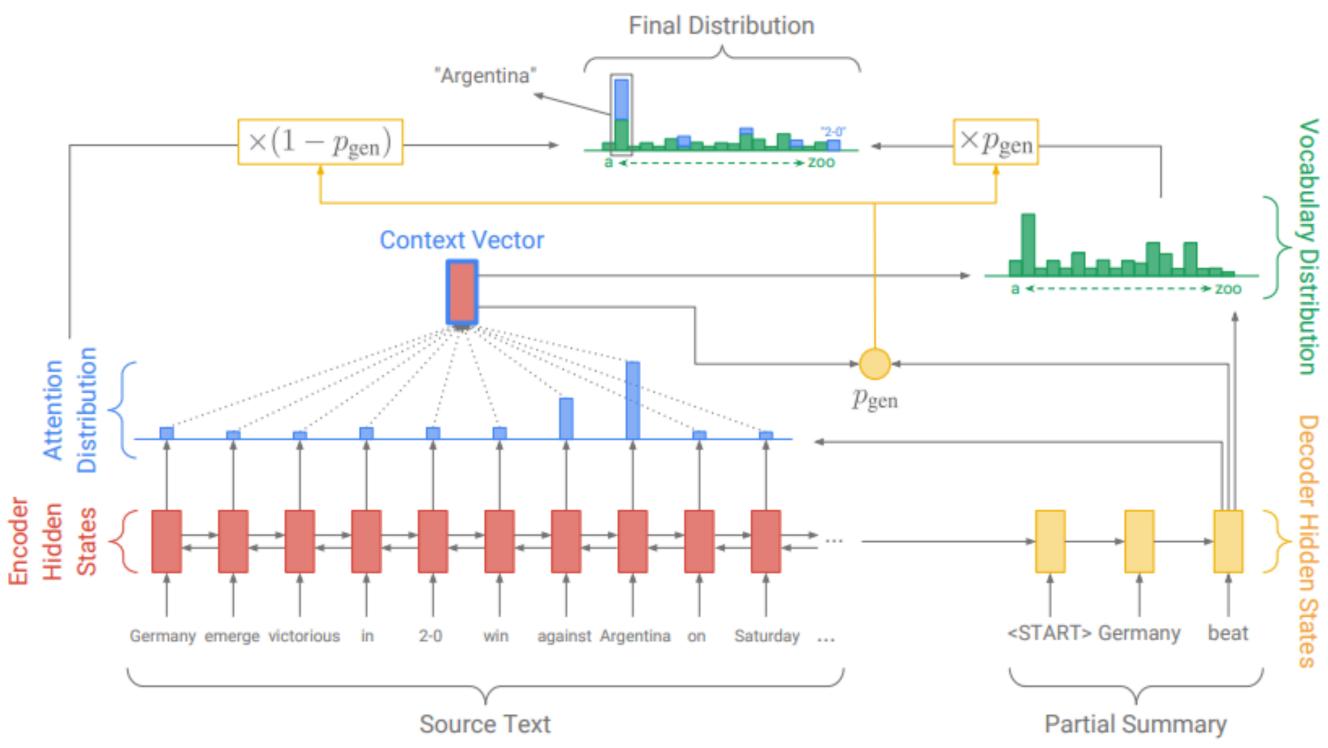
- Another solution for unknown words: "copy" them "as-is" from source
- <u>"Pointing the Unknown Words"</u> (Gulchere et al 2016)
- Interpolate the attention distribution and the softmax distribution





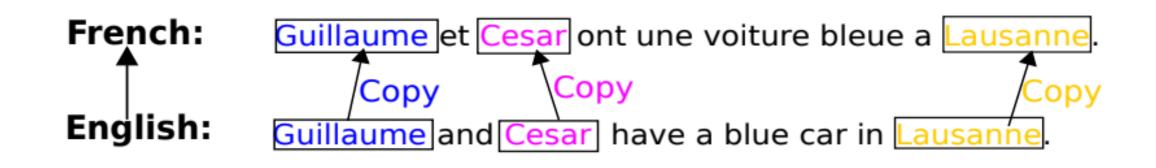
- Another solution for unknown words: "copy" them "as-is" from source
- <u>"Pointing the Unknown Words"</u> (Gulchere et al 2016)
- Interpolate the attention distribution and the softmax distribution
- Useful in summarization tasks (<u>Gu et al</u>) <u>2016, See et al. 2017</u>)

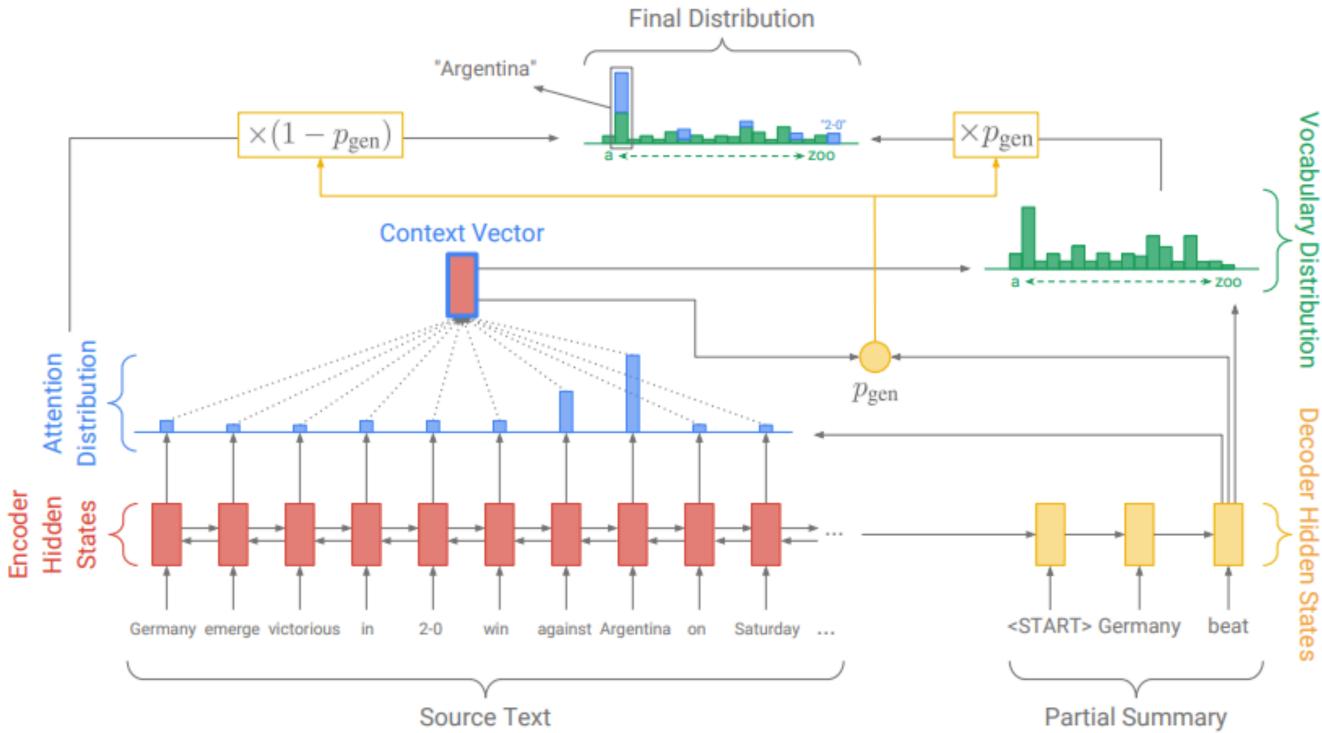




- Another solution for unknown words: "copy" them "as-is" from source
- <u>"Pointing the Unknown Words"</u> (Gulchere et al 2016)
- Interpolate the attention distribution and the softmax distribution
- Useful in summarization tasks (<u>Gu et al</u>) <u>2016, See et al. 2017</u>)
- coder

• Problem - can't copy in all cases





 "Neural Machine Translation of Rare Words with Subword Units" <u>Sennrich et al, 2015</u>

- "Neural Machine Translation of Rare Words with Subword Units" <u>Sennrich et al, 2015</u>
- Uses the "Byte-Pair Encoding" compression algorithm (Gage, 1994):

```
import re, collections
def get stats(vocab):
  pairs = collections.defaultdict(int)
  for word, freq in vocab.items():
    symbols = word.split()
   for i in range(len(symbols)-1):
      pairs[symbols[i],symbols[i+1]] += freq
  return pairs
def merge vocab(pair, v in):
 v out = {}
  bigram = re.escape(' '.join(pair))
  p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
  for word in v in:
   w out = p.sub(''.join(pair), word)
   v out[w out] = v in[word]
  return v out
vocab = {'l o w </w>' : 5, 'l o w e r </w>' : 2,
         'newest </w>':6, 'widest </w>':3}
num merges = 10
for i in range(num merges):
  pairs = get stats(vocab)
  best = max(pairs, key=pairs.get)
  vocab = merge_vocab(best, vocab)
  print(best)
```


- "Neural Machine Translation of Rare Words with Subword Units" <u>Sennrich et al, 2015</u>
- Uses the "Byte-Pair Encoding" compression algorithm (Gage, 1994):
 - Start bottom up from characters as symbols

```
import re, collections
def get stats(vocab):
  pairs = collections.defaultdict(int)
  for word, freq in vocab.items():
    symbols = word.split()
    for i in range(len(symbols)-1):
      pairs[symbols[i],symbols[i+1]] += freq
  return pairs
def merge vocab(pair, v in):
  v \text{ out} = \{\}
  bigram = re.escape(' '.join(pair))
  p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
  for word in v in:
    w out = p.sub(''.join(pair), word)
    v out[w out] = v in[word]
  return v out
vocab = {'l o w </w>' : 5, 'l o w e r </w>' : 2,
         'newest </w>':6, 'widest </w>':3}
num merges = 10
for i in range(num merges):
  pairs = get stats(vocab)
  best = max(pairs, key=pairs.get)
  vocab = merge_vocab(best, vocab)
  print(best)
```


- "Neural Machine Translation of Rare Words with Subword Units" <u>Sennrich et al, 2015</u>
- Uses the "Byte-Pair Encoding" compression algorithm (Gage, 1994):
 - Start bottom up from characters as symbols
 - Pick the most common symbol pair

```
import re, collections
def get stats(vocab):
  pairs = collections.defaultdict(int)
  for word, freq in vocab.items():
    symbols = word.split()
    for i in range(len(symbols)-1):
      pairs[symbols[i],symbols[i+1]] += freq
  return pairs
def merge vocab(pair, v in):
  v \text{ out} = \{\}
  bigram = re.escape(' '.join(pair))
  p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
  for word in v in:
    w out = p.sub(''.join(pair), word)
    v out[w out] = v in[word]
  return v out
vocab = {'l o w </w>' : 5, 'l o w e r </w>' : 2,
         'newest </w>':6, 'widest </w>':3}
num merges = 10
for i in range(num merges):
  pairs = get stats(vocab)
  best = max(pairs, key=pairs.get)
  vocab = merge_vocab(best, vocab)
  print(best)
```


- "Neural Machine Translation of Rare Words with Subword Units" <u>Sennrich et al, 2015</u>
- Uses the "Byte-Pair Encoding" compression algorithm (Gage, 1994):
 - Start bottom up from characters as symbols
 - Pick the most common symbol pair
 - Merge it to a new symbol

```
import re, collections
def get stats(vocab):
  pairs = collections.defaultdict(int)
  for word, freq in vocab.items():
    symbols = word.split()
    for i in range(len(symbols)-1):
      pairs[symbols[i],symbols[i+1]] += freq
  return pairs
def merge vocab(pair, v in):
  v \text{ out} = \{\}
  bigram = re.escape(' '.join(pair))
  p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
  for word in v in:
    w out = p.sub(''.join(pair), word)
    v out[w out] = v in[word]
  return v out
vocab = {'l o w </w>' : 5, 'l o w e r </w>' : 2,
         'newest </w>':6, 'widest </w>':3}
num merges = 10
for i in range(num merges):
  pairs = get stats(vocab)
  best = max(pairs, key=pairs.get)
  vocab = merge_vocab(best, vocab)
  print(best)
```


- "Neural Machine Translation of Rare Words with Subword Units" <u>Sennrich et al, 2015</u>
- Uses the "Byte-Pair Encoding" compression algorithm (Gage, 1994):
 - Start bottom up from characters as symbols
 - Pick the most common symbol pair
 - Merge it to a new symbol
 - Repeat until the desired vocal size

```
import re, collections
def get stats(vocab):
  pairs = collections.defaultdict(int)
  for word, freq in vocab.items():
    symbols = word.split()
    for i in range(len(symbols)-1):
      pairs[symbols[i],symbols[i+1]] += freq
  return pairs
def merge vocab(pair, v in):
  v \text{ out} = \{\}
  bigram = re.escape(' '.join(pair))
  p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
  for word in v in:
    w out = p.sub(''.join(pair), word)
    v out[w out] = v in[word]
  return v out
vocab = {'l o w </w>' : 5, 'l o w e r </w>' : 2,
         'newest </w>':6, 'widest </w>':3}
num merges = 10
for i in range(num merges):
  pairs = get stats(vocab)
  best = max(pairs, key=pairs.get)
  vocab = merge_vocab(best, vocab)
  print(best)
```

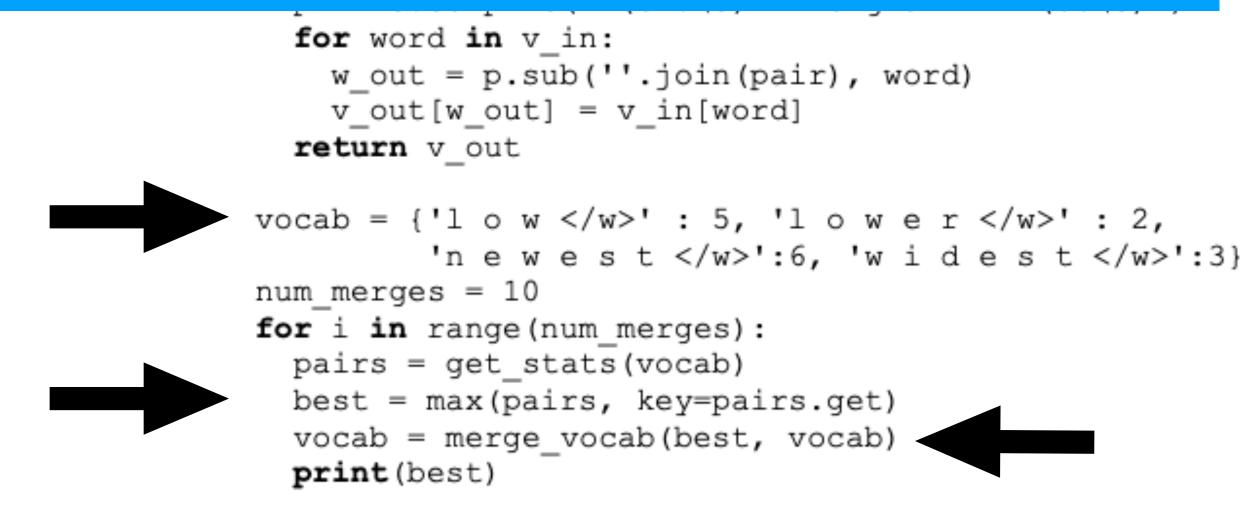

- "Neural Machine Translation of Rare Words with Subword Units" <u>Sennrich et al, 2015</u>
- Uses the "Byte-Pair Encoding" compression algorithm (Gage, 1994):
 - Start bottom up from characters as symbols
 - Pick the most common symbol pair
 - Merge it to a new symbol
 - Repeat until the desired vocal size

import re, collections

def get stats(vocab): pairs = collections.defaultdict(int) for word, freq in vocab.items(): symbols = word.split()

This is a shot of C@@ ann@@ ery R@@ ow in 19@@ 32.

. 32 @@19-זהו צילום של ק@@ אנ@@ ארי רו ב-19



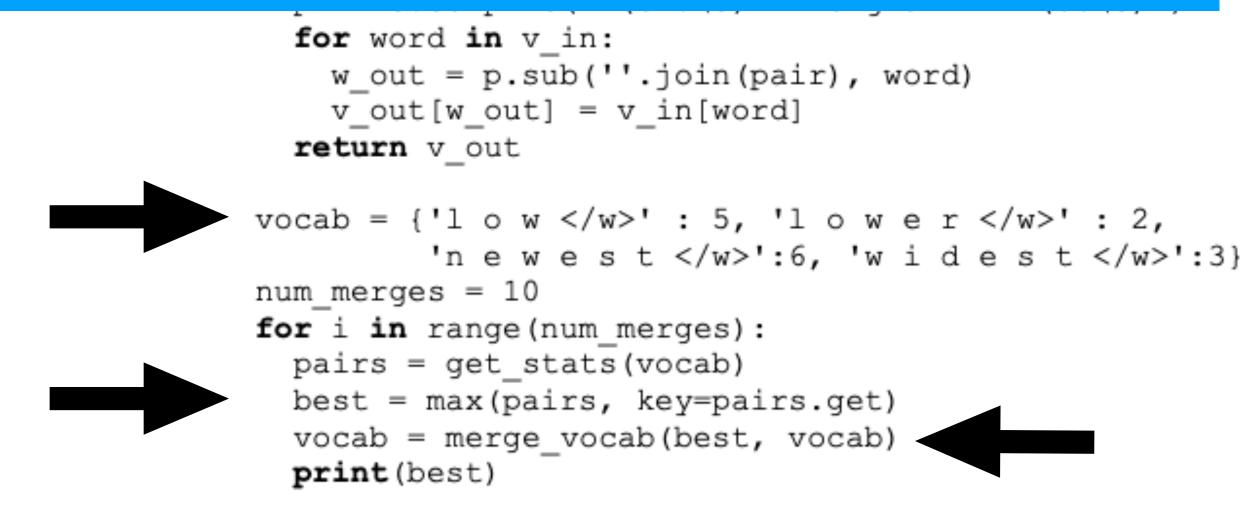
- "Neural Machine Translation of Rare Words with Subword Units" <u>Sennrich et al, 2015</u>
- Uses the "Byte-Pair Encoding" compression algorithm (Gage, 1994):
 - Start bottom up from characters as symbols
 - Pick the most common symbol pair
 - Merge it to a new symbol
 - Repeat until the desired vocal size
- The current standard for word segmentation in NLP applications (1900+ citations)

import re, collections

def get stats(vocab): pairs = collections.defaultdict(int) for word, freq in vocab.items(): symbols = word.split()

This is a shot of C@@ ann@@ ery R@@ ow in 19@@ 32.

. 32 @@19-זהו צילום של ק@@ אנ@@ ארי רו ב-19



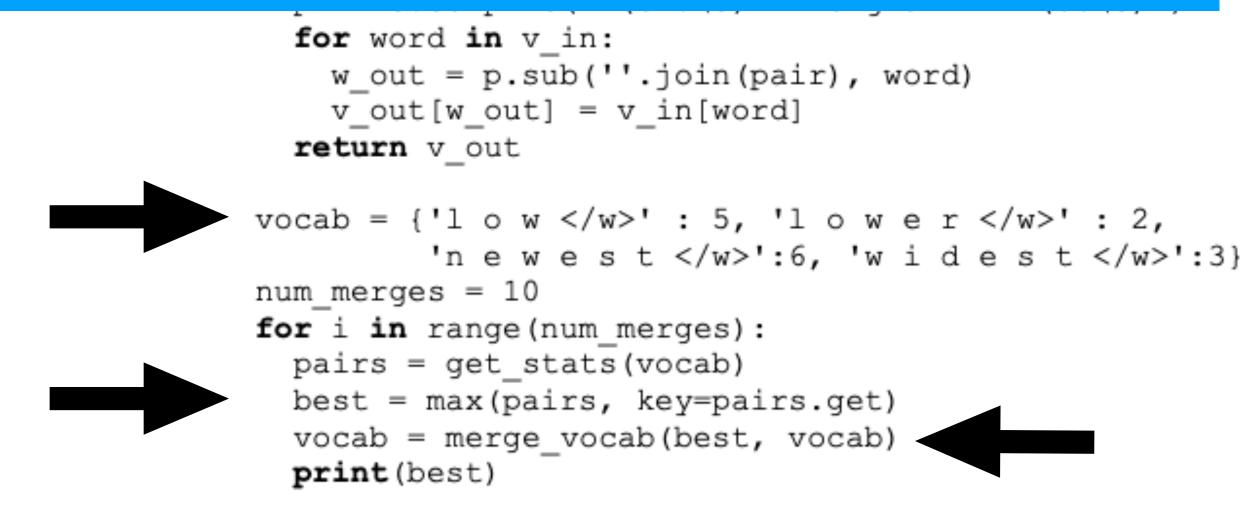
- "Neural Machine Translation of Rare Words with Subword Units" <u>Sennrich et al, 2015</u>
- Uses the "Byte-Pair Encoding" compression algorithm (Gage, 1994):
 - Start bottom up from characters as symbols
 - Pick the most common symbol pair
 - Merge it to a new symbol
 - Repeat until the desired vocal size
- The current standard for word segmentation in NLP applications (1900+ citations)
- Controllable vocabulary size, no UNKs!

import re, collections

def get stats(vocab): pairs = collections.defaultdict(int) for word, freq in vocab.items(): symbols = word.split()

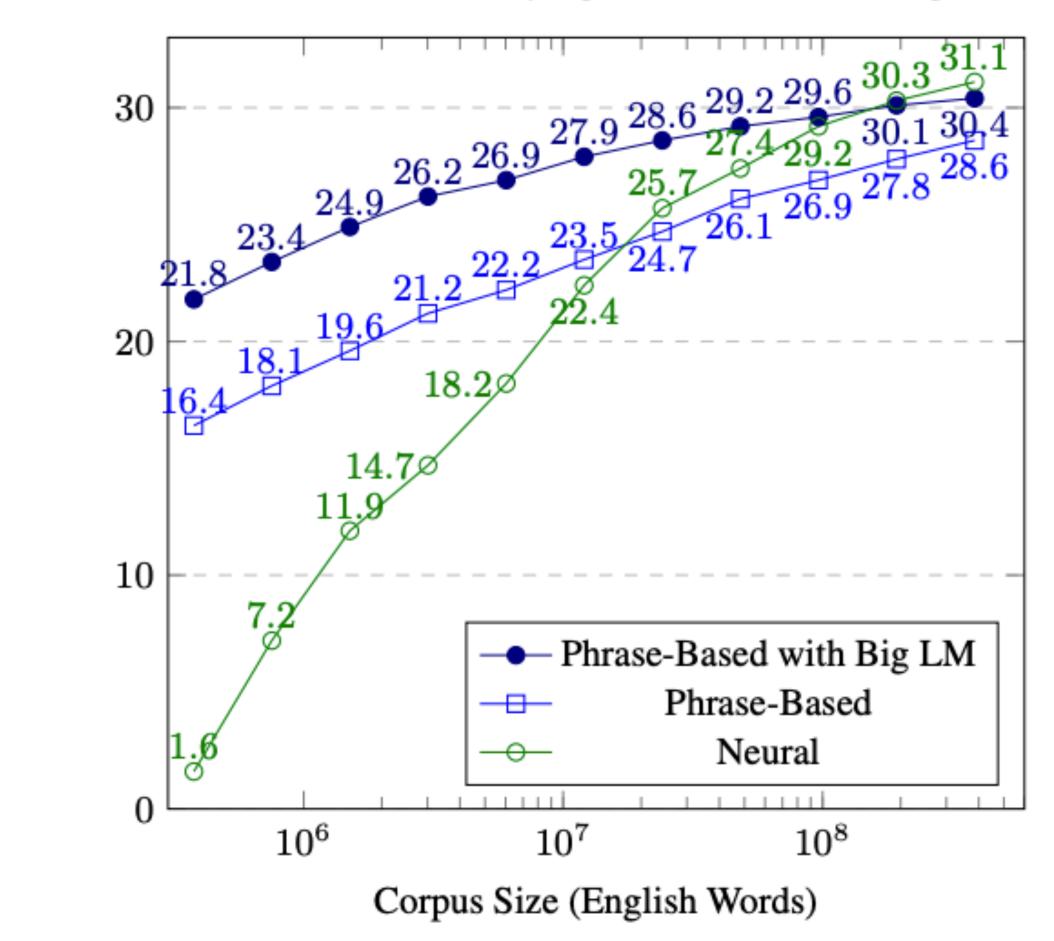
This is a shot of C@@ ann@@ ery R@@ ow in 19@@ 32.

. 32 @@19-זהו צילום של ק@@ אנ@@ ארי רו ב-19

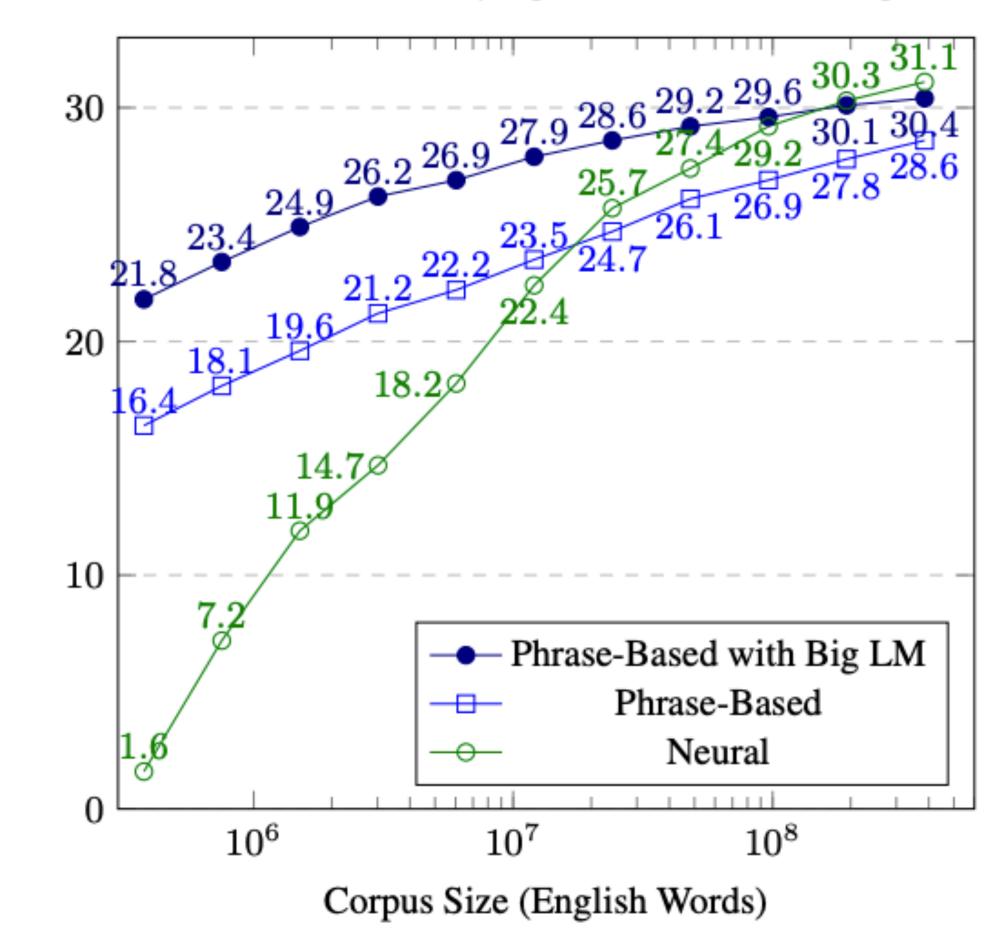


 Statistical MT used language models extensively. What about NMT?

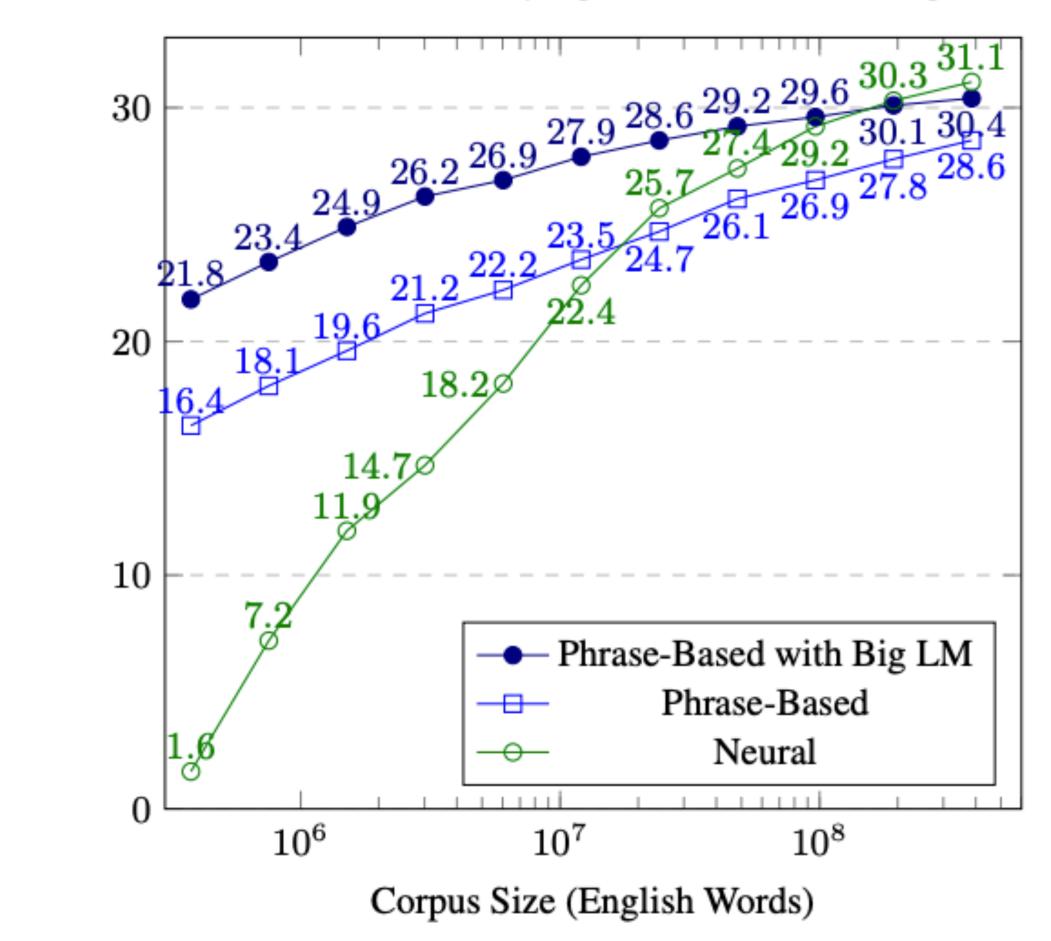
- Statistical MT used language models extensively. What about NMT?
- Koehn & Knowles 2017



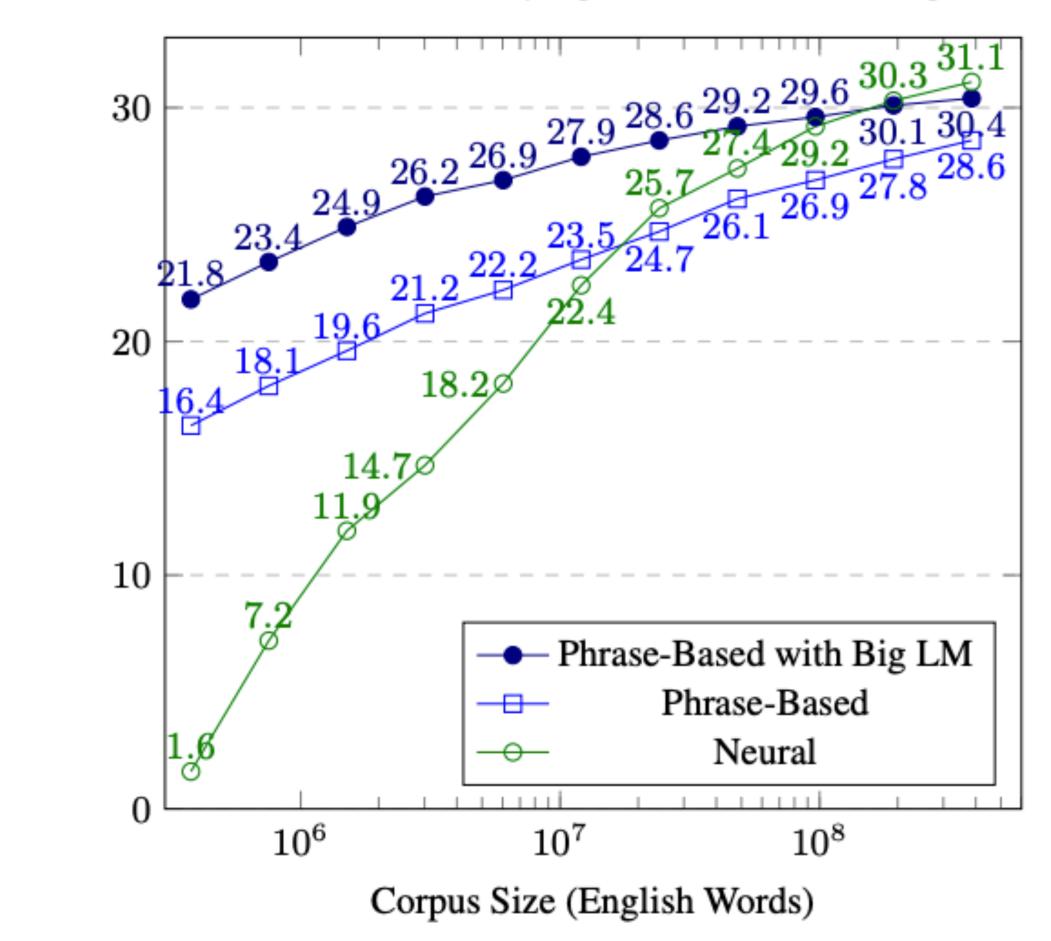
- Statistical MT used language models extensively. What about NMT?
- Koehn & Knowles 2017
 - SMT is better in low resource settings



- Statistical MT used language models extensively. What about NMT?
- Koehn & Knowles 2017
 - SMT is better in low resource settings
 - Especially with a LM



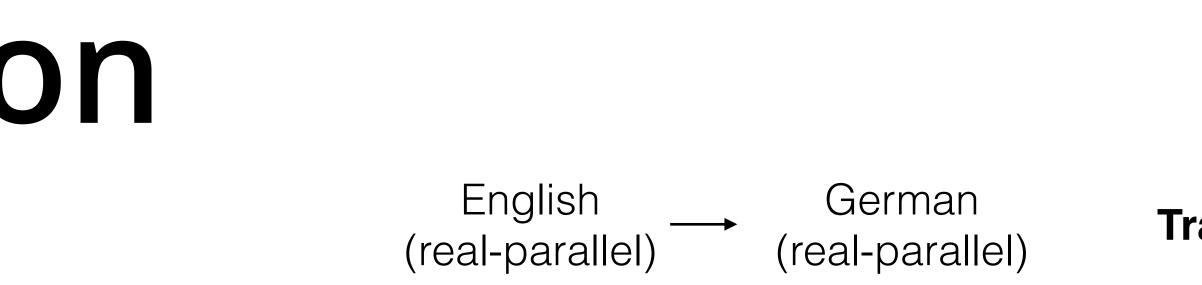
- Statistical MT used language models extensively. What about NMT?
- Koehn & Knowles 2017
 - SMT is better in low resource settings
 - Especially with a LM
- How can we incorporate a LM into NMT?



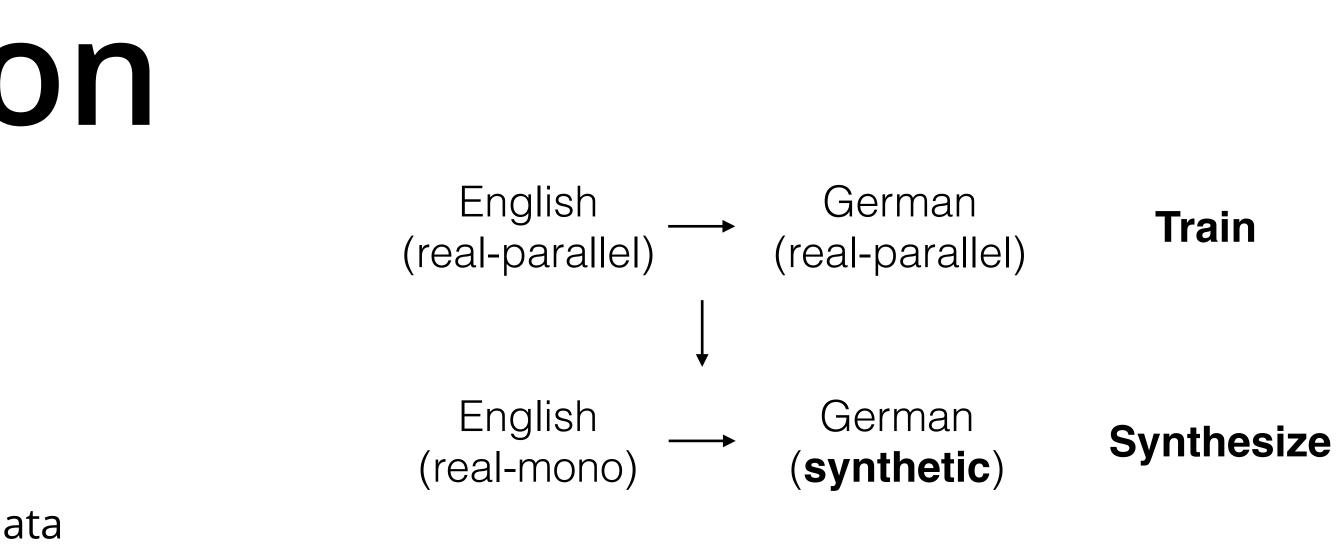
• <u>Sennrich et al. 2016</u>

- <u>Sennrich et al. 2016</u>
- A simpler approach synthesize parallel data from monolingual data:

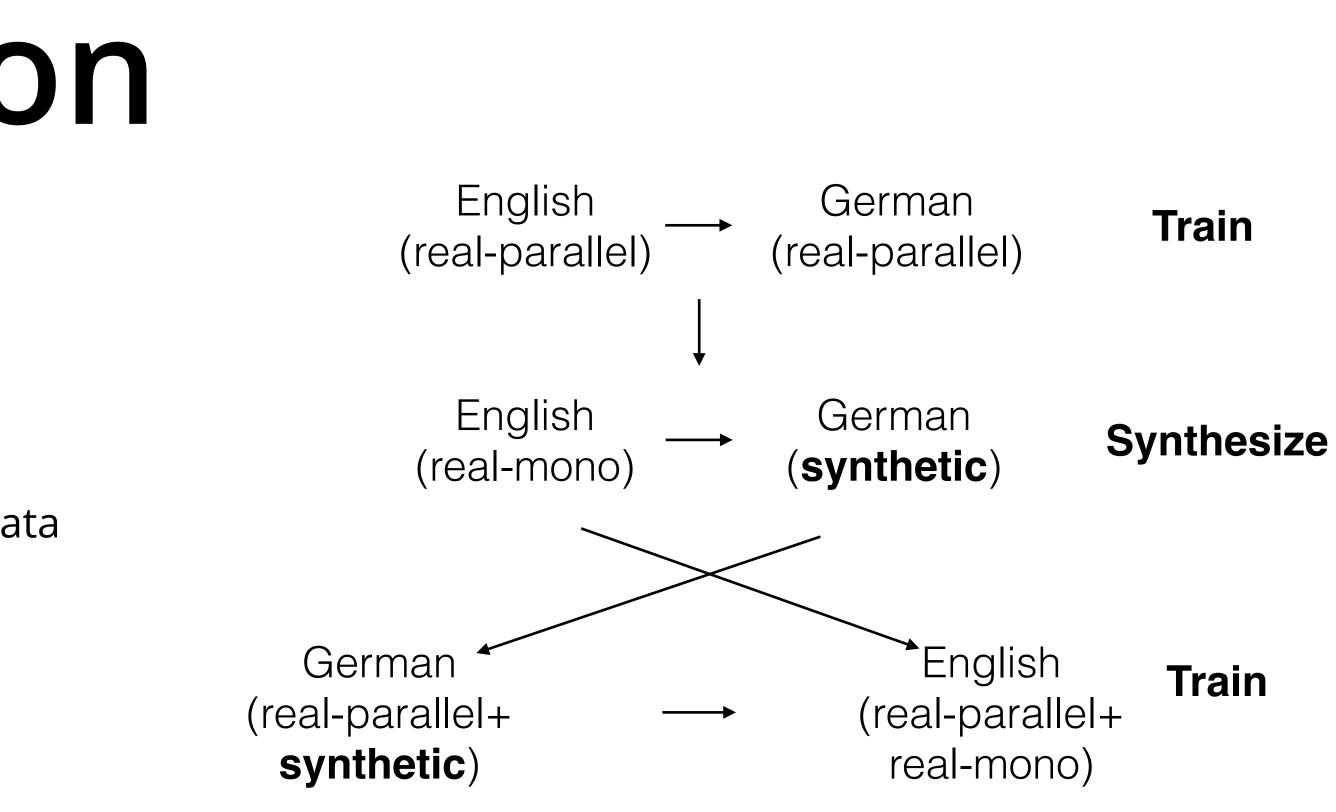
- <u>Sennrich et al. 2016</u>
- A simpler approach **synthesize** parallel data from monolingual data:
 - Train a "reverse" model with the available parallel data



- <u>Sennrich et al. 2016</u>
- A simpler approach synthesize parallel data from monolingual data:
 - Train a "reverse" model with the available parallel data
 - Translate the monolingual data using the reverse model

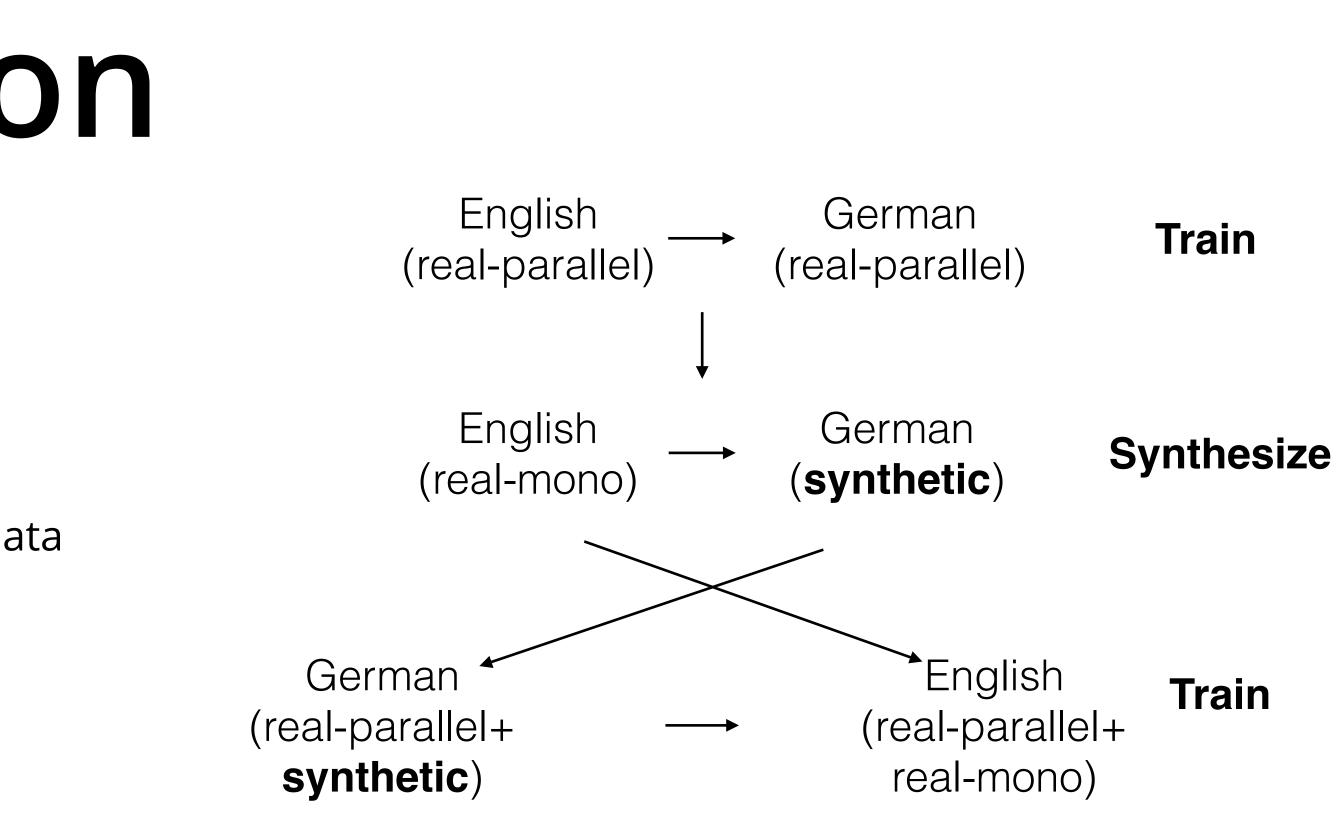


- <u>Sennrich et al. 2016</u>
- A simpler approach **synthesize** parallel data from monolingual data:
 - Train a "reverse" model with the available parallel data
 - Translate the monolingual data using the reverse model
 - Train a model using the "real" parallel data and the synthetic parallel data



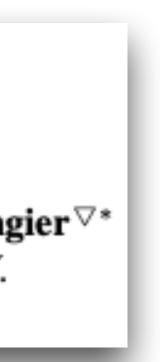
		۱
		ł
	_	ł
	_	

- <u>Sennrich et al. 2016</u>
- A simpler approach synthesize parallel data from monolingual data:
 - Train a "reverse" model with the available parallel data
 - Translate the monolingual data using the reverse model
 - Train a model using the "real" parallel data and the synthetic parallel data
- The driving force of todays state-of-the-art systems

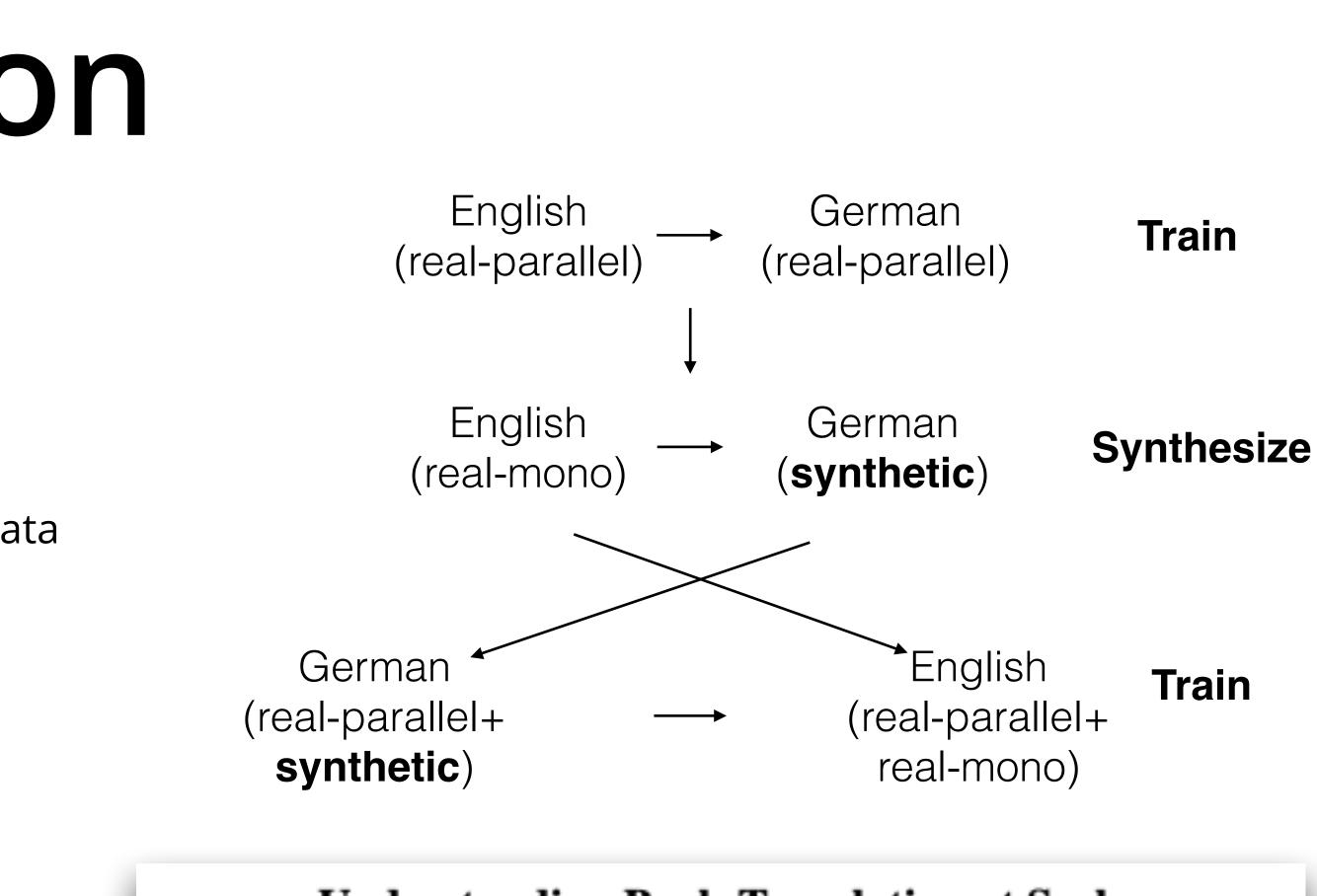


Understanding Back-Translation at Scale

Sergey Edunov^{\triangle} Myle Ott^{\triangle} Michael Auli^{\triangle} David Grangier^{$\bigtriangledown *$} ^{\triangle}Facebook AI Research, Menlo Park, CA & New York, NY. ^{\bigtriangledown}Google Brain, Mountain View, CA.

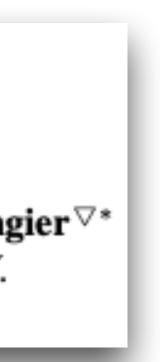


- <u>Sennrich et al. 2016</u>
- A simpler approach synthesize parallel data from monolingual data:
 - Train a "reverse" model with the available parallel data
 - Translate the monolingual data using the reverse model
 - Train a model using the "real" parallel data and the synthetic parallel data
- The driving force of todays state-of-the-art systems
 - To "fix" the noise of synthetic data, usually followed by fine-tuning on "clean" data



Understanding Back-Translation at Scale

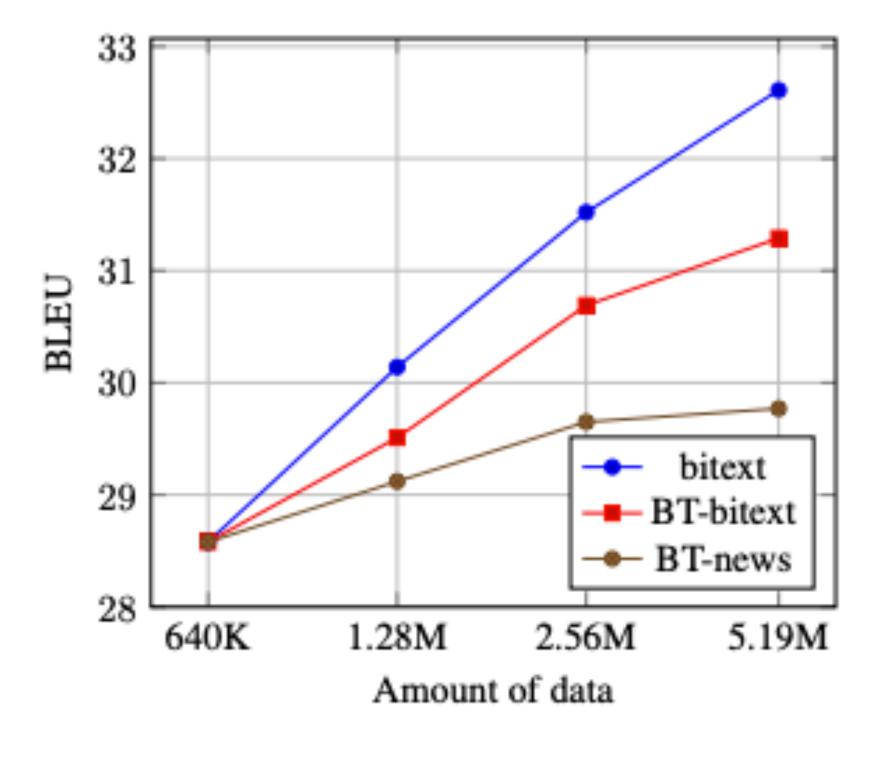
Sergey Edunov^{\triangle} Myle Ott^{\triangle} Michael Auli^{\triangle} David Grangier^{$\bigtriangledown *$} ^{\triangle}Facebook AI Research, Menlo Park, CA & New York, NY. ^{\bigtriangledown}Google Brain, Mountain View, CA.



Transfer Learning

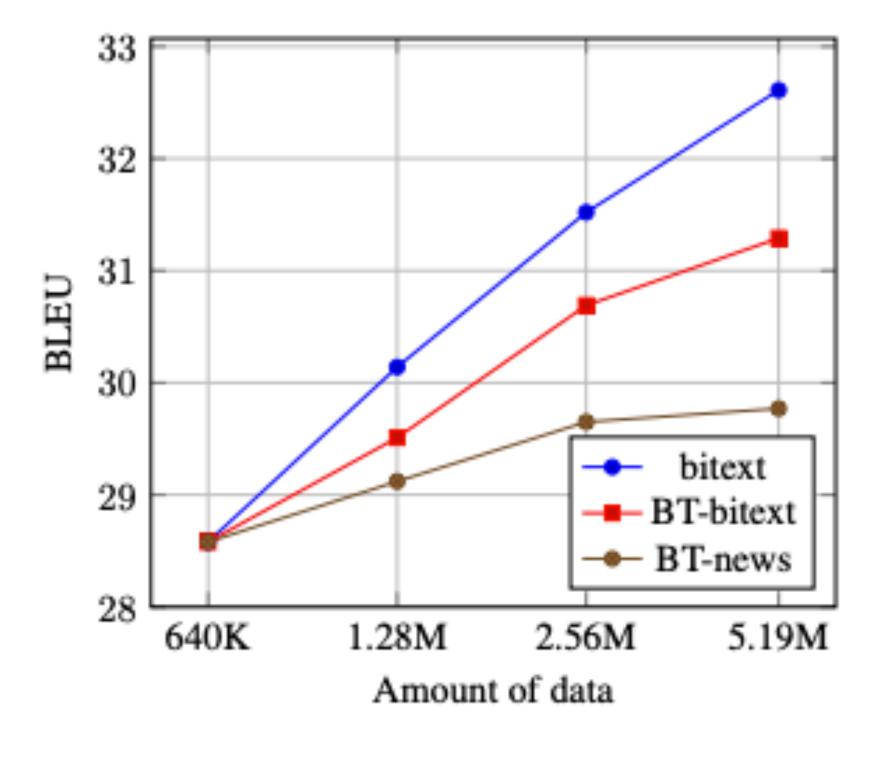
Transfer Learning

 Back-Translation gives nice improvements, but monolingual data is not as good as parallel data



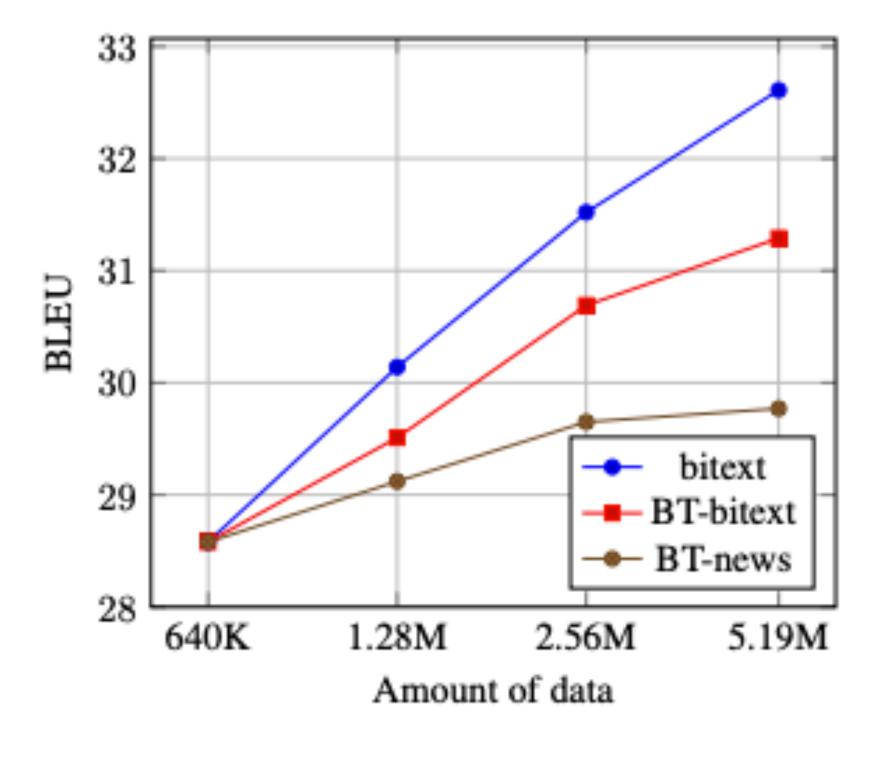
From Edunov et al 2018

- Back-Translation gives nice improvements, but monolingual data is not as good as parallel data
- Can we use parallel data from other language pairs?



From Edunov et al 2018

- Back-Translation gives nice improvements, but monolingual data is not as good as parallel data
- Can we use parallel data from other language pairs?
- "Transfer Learning for Low-Resource Neural Machine Translation", <u>Zoph et al. (2016)</u>



From Edunov et al 2018

- Back-Translation gives nice improvements, but monolingual data is not as good as parallel data
- Can we use parallel data from other language pairs?
- "Transfer Learning for Low-Resource Neural Machine Translation", <u>Zoph et al. (2016)</u>
- Idea Train a high-resource "parent" model (French-English) and **fine-tune** it for a lowresource "child" pair (Uzbek-English)

Language Pair	Parent	Train Size	Bleu ↑	$PPL\downarrow$
Uzbek–English	None	1.8m	10.7	22.4
	French-English	1.8m	15.0 (+4.3)	13.9
French'-English	None	1.8m	13.3	28.2
	French-English	1.8m	20.0 (+6.7)	10.9

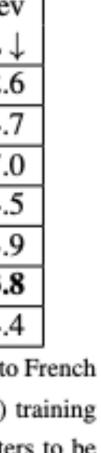
- Back-Translation gives nice improvements, but monolingual data is not as good as parallel data
- Can we use parallel data from other language pairs?
- "Transfer Learning for Low-Resource Neural Machine Translation", <u>Zoph et al. (2016)</u>
- Idea Train a high-resource "parent" model (French-English) and **fine-tune** it for a lowresource "child" pair (Uzbek-English)
- Freezing some parts of the network helps avoids "catastrophic forgetting"

re-trained.

Language Pair	Parent	Train Size	Bleu ↑	$PPL\downarrow$
Uzbek–English	None	1.8m	10.7	22.4
	French-English	1.8m	15.0 (+4.3)	13.9
French'-English	None	1.8m	13.3	28.2
	French-English	1.8m	20.0 (+6.7)	10.9

Source	Source	Target	Attention	Target Input	Target Output	Dev	Dev
Embeddings	RNN	RNN	Attention	Embeddings	Embeddings	Bleu↑	PPL 、
A	_	-	-	A	a	0.0	112.6
-	_	₽	₽		a	7.7	24.3
ſ	ſ	_	_	A	A	11.8	17.0
-	ſ	ſ			a	14.2	14.5
-	F	ſ	ſ		a	15.0	13.9
ſ	ſ	f	₽	f	a	14.7	13.8
ſ	ſ	ſ	f	₽	₽	13.7	14.4

Table 7: Starting with the parent French-English model (BLEU =24.4, PPL=6.2), we randomly assign Uzbek word types to French word embeddings, freeze various parameters of the neural network model (△), and allow Uzbek-English (child model) training to modify other parts (). The table shows how Uzbek-English BLEU and perplexity vary as we allow more parameters to be



 If transfer learning helps, let's train multiple language pairs together

- If transfer learning helps, let's train multiple language pairs together
- Encourage more knowledge transfer between language pairs better quality

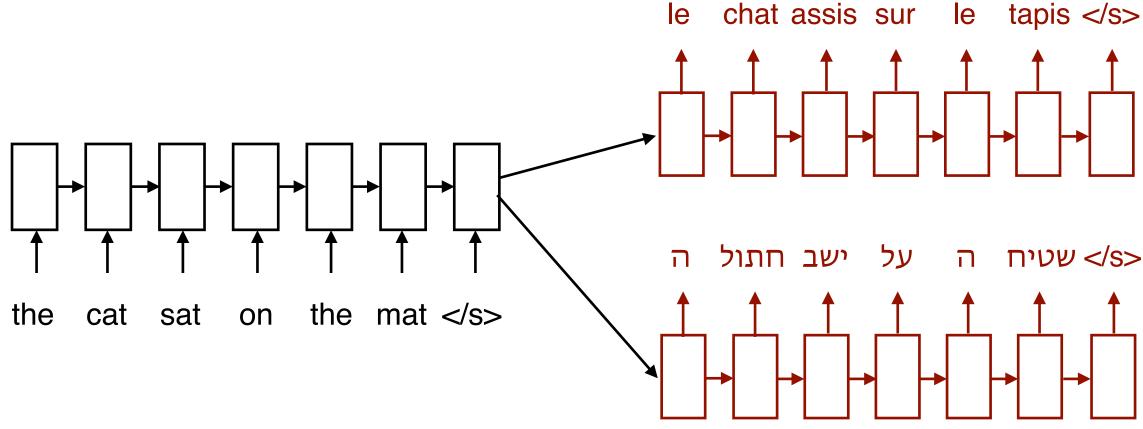
- If transfer learning helps, let's train multiple language pairs together
- Encourage more knowledge transfer between language pairs better quality
- Reduce hardware requirements one model, one server, many language pairs

- If transfer learning helps, let's train multiple language pairs **together**
- Encourage more knowledge transfer between language pairs better quality
- Reduce hardware requirements one model, one server, many language pairs

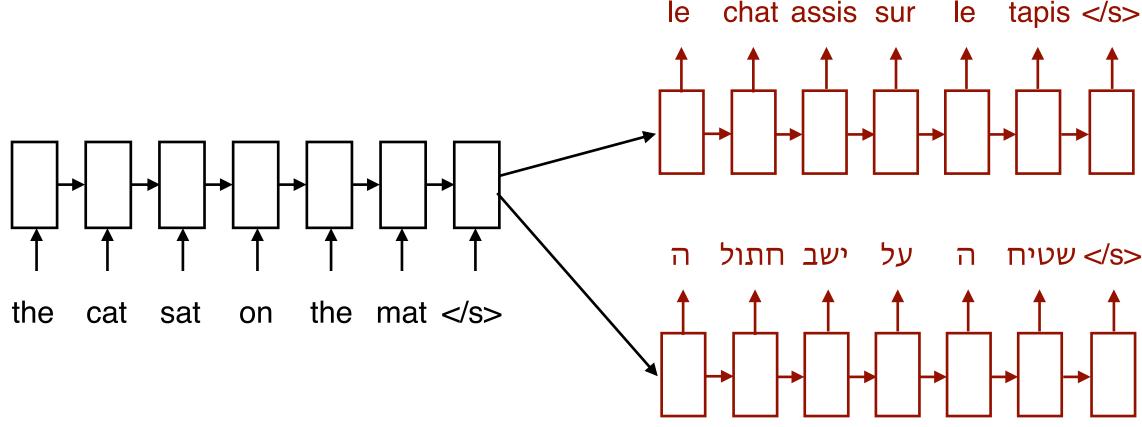
Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, Jeffrey Dean Google {melvinp, schuster}@google.com

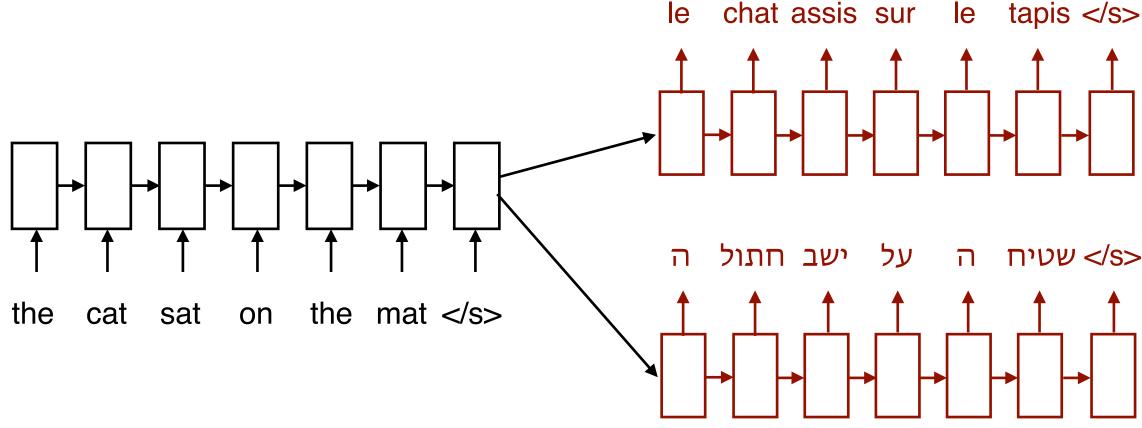
 One approach: separate encoder/ decoder per language (<u>Dong et al.</u> 2015, Firat et al. 2016)



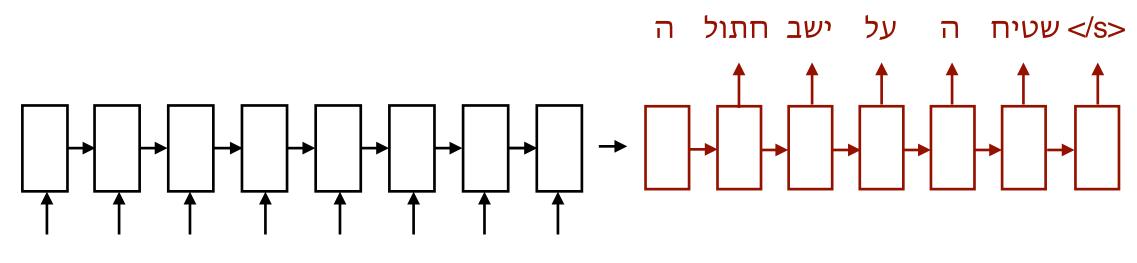
- One approach: separate encoder/ decoder per language (<u>Dong et al.</u> <u>2015, Firat et al. 2016</u>)
 - Pros each language has its own parameters, no interference

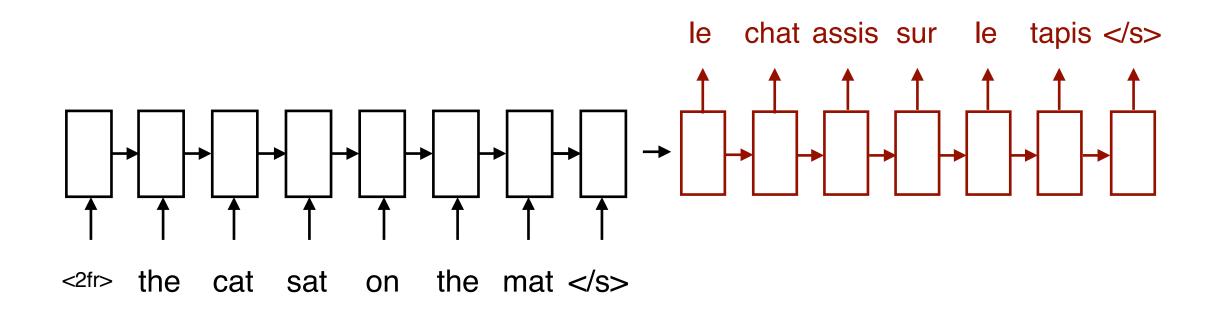


- One approach: separate encoder/ decoder per language (<u>Dong et al.</u> <u>2015, Firat et al. 2016</u>)
 - Pros each language has its own parameters, no interference
 - Cons complex architecture, less parameter sharing for transfer

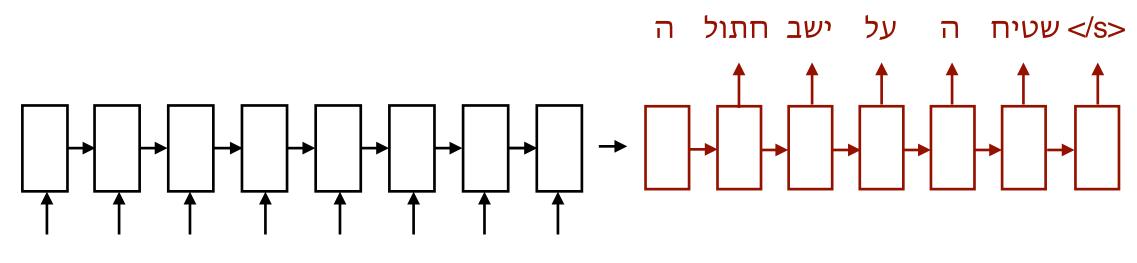


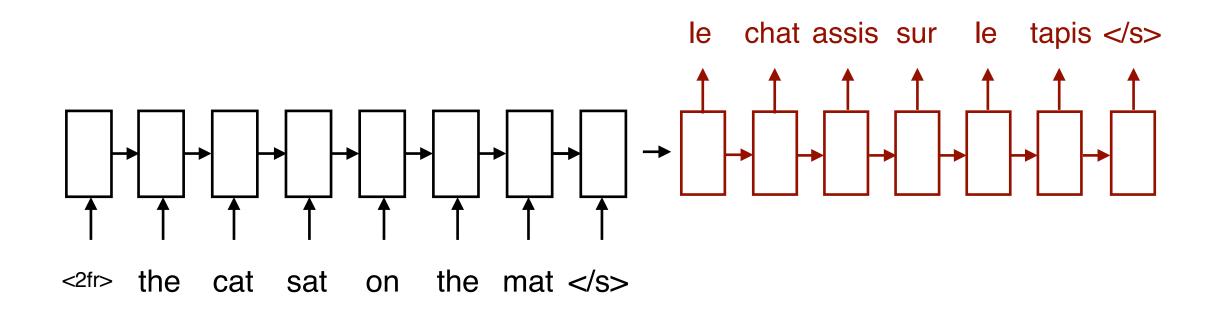
 Another approach - share all parameters (Johnson et al. 2016, Ha et al. 2016)



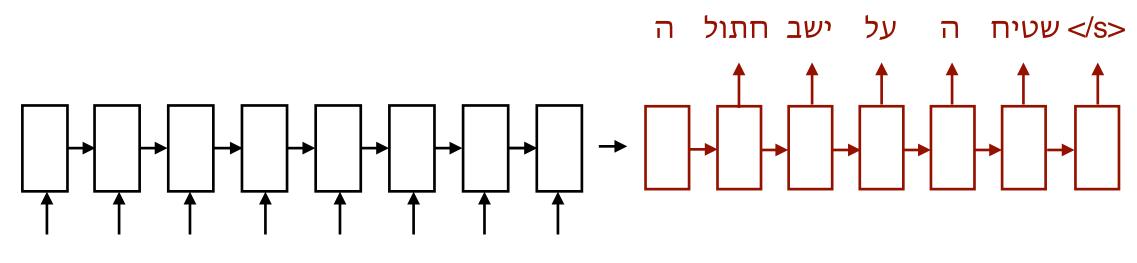


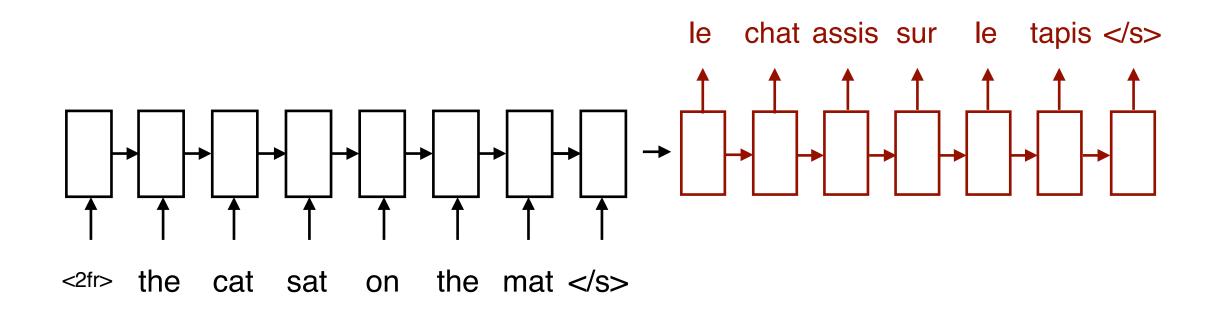
- Another approach share all parameters (Johnson et al. 2016, Ha et al. 2016)
 - Use a special language token to control the target language



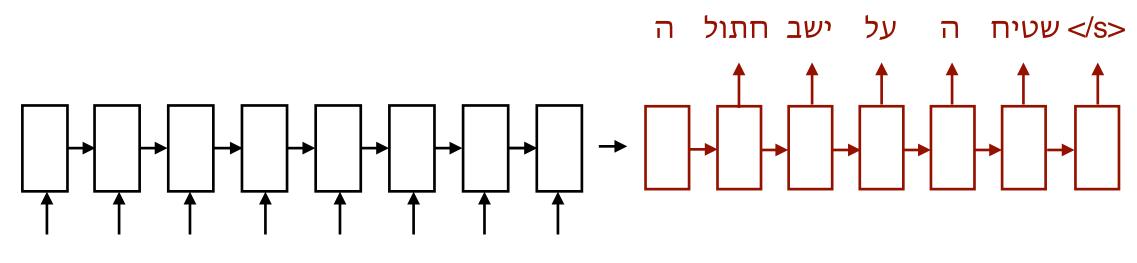


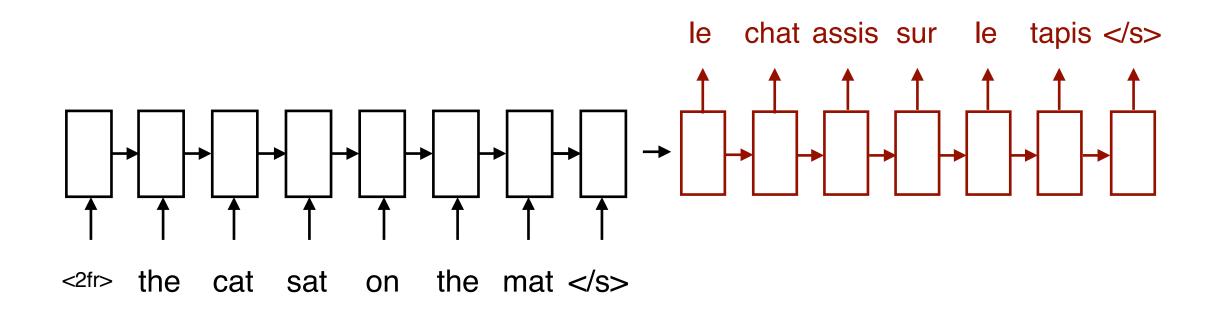
- Another approach share all parameters (Johnson et al. 2016, Ha et al. 2016)
 - Use a special language token to control the target language
 - Pros Full parameter sharing, no architecture changes





- Another approach share all parameters (Johnson et al. 2016, Ha et al. 2016)
 - Use a special language token to control the target language
 - Pros Full parameter sharing, no architecture changes
 - Con languages may "interfere" each other

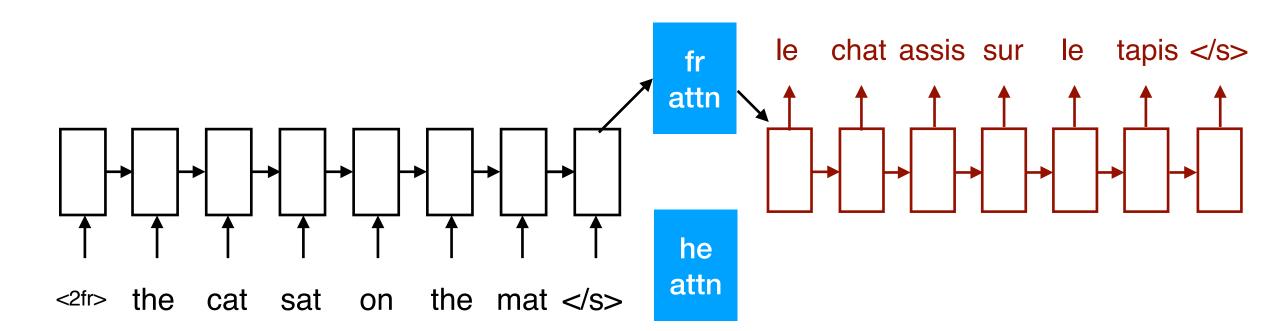




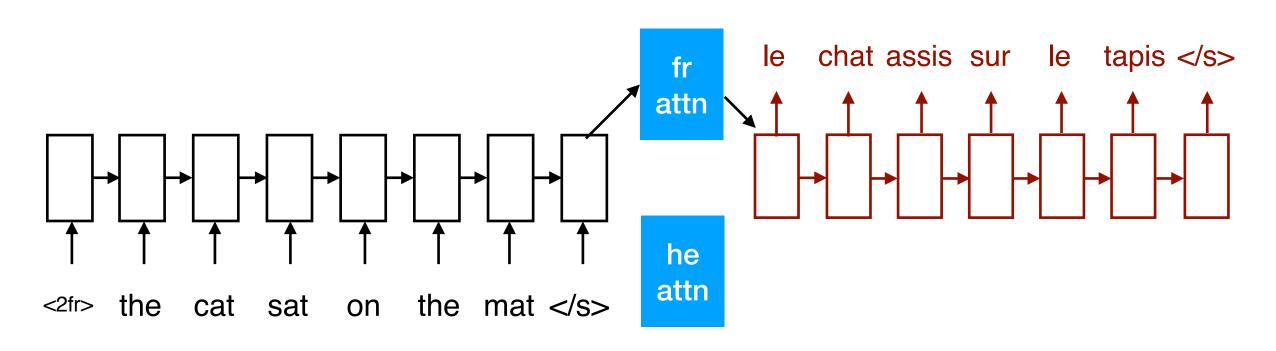
• A third approach - "in between"

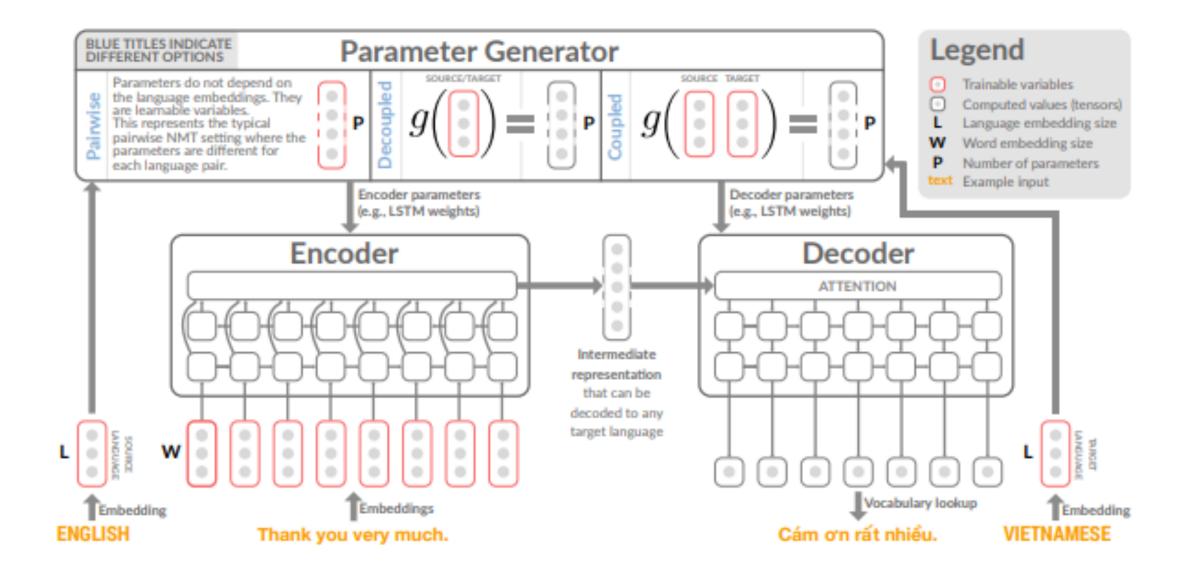
- A third approach "in between"
- Share only some of the parameters

- A third approach "in between"
- Share only some of the parameters
 - <u>Blackwood et al (2018)</u> all but the attention

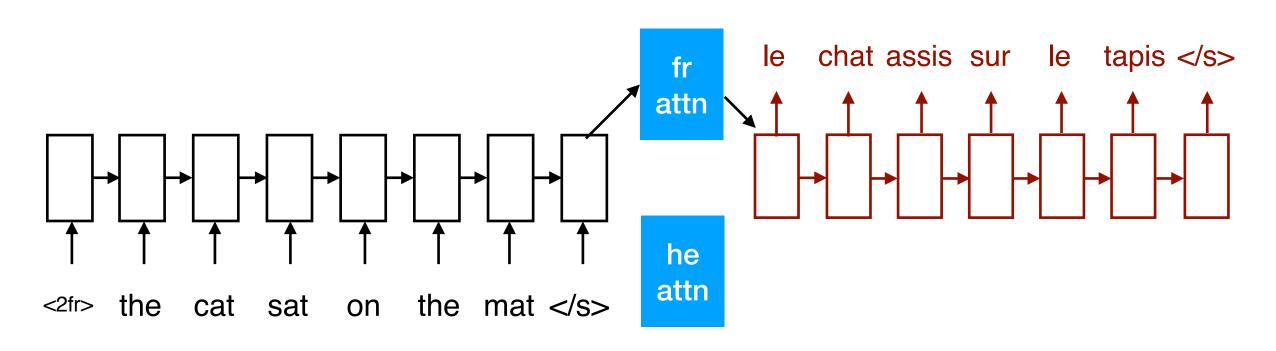


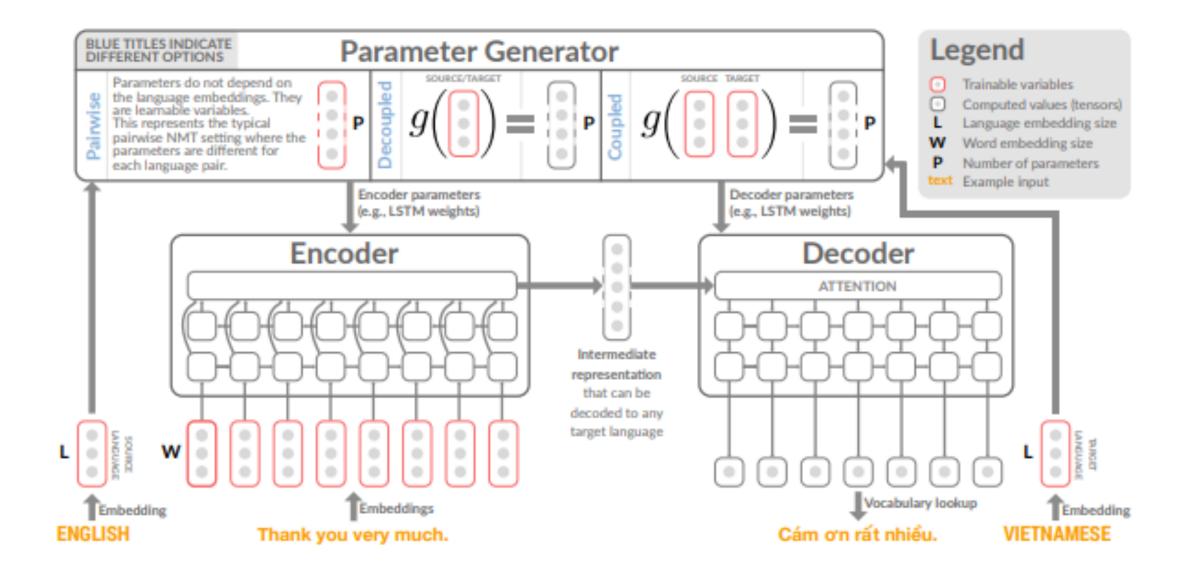
- A third approach "in between"
- Share only some of the parameters
 - <u>Blackwood et al (2018)</u> all but the attention
 - <u>Platanios et al (2018)</u> learn what to share



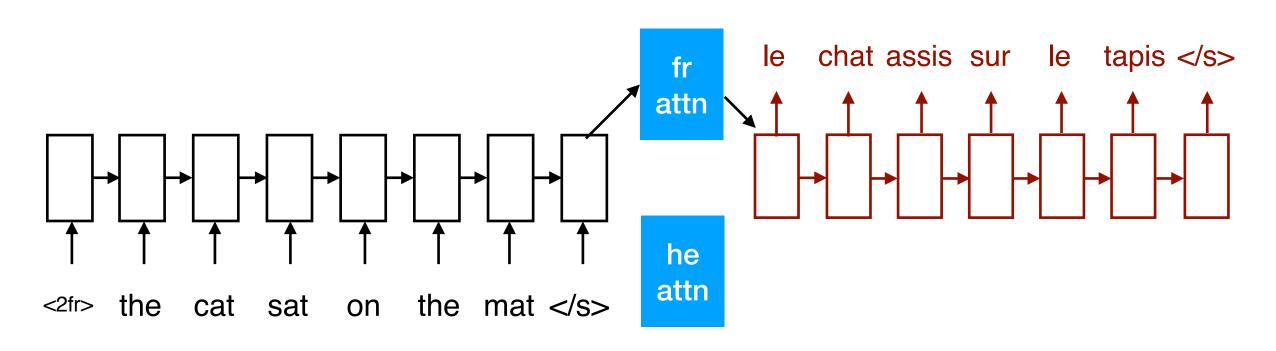


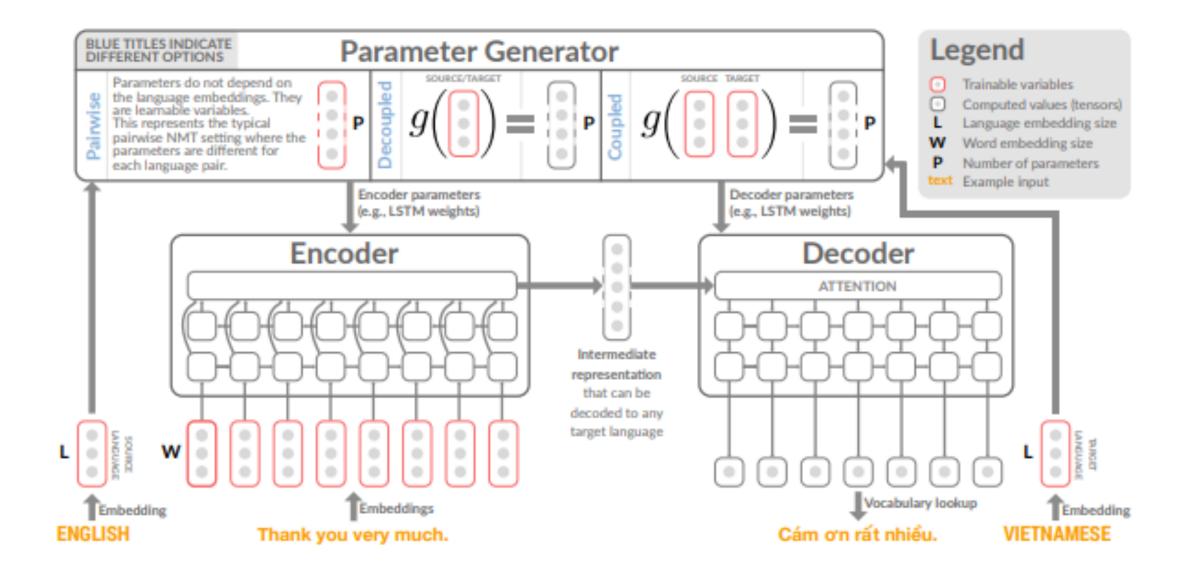
- A third approach "in between"
- Share only some of the parameters
 - <u>Blackwood et al (2018)</u> all but the attention
 - <u>Platanios et al (2018)</u> learn what to share
- Can reduce interference





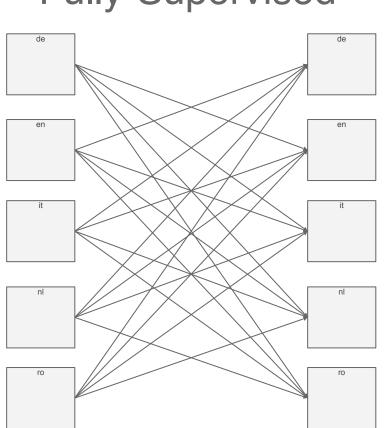
- A third approach "in between"
- Share only some of the parameters
 - <u>Blackwood et al (2018)</u> all but the attention
 - <u>Platanios et al (2018)</u> learn what to share
- Can reduce interference
- More complex models



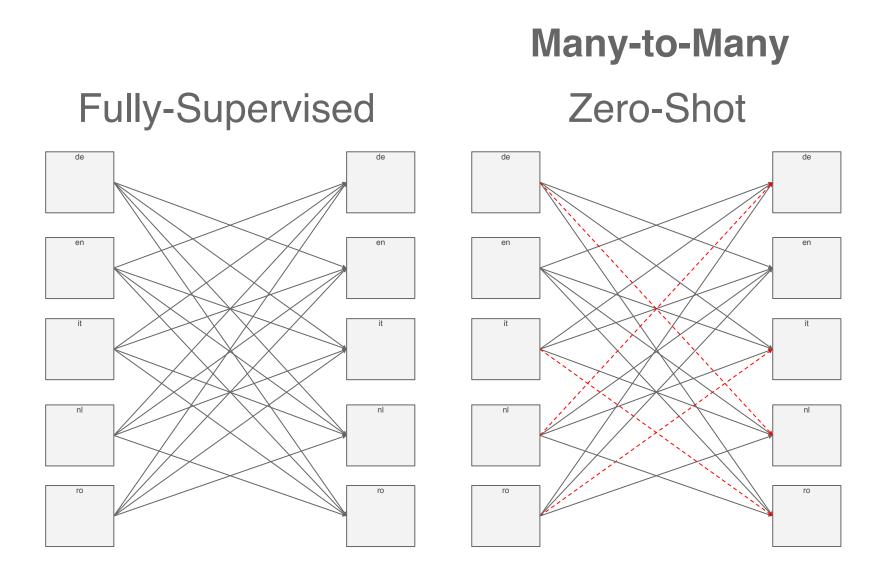


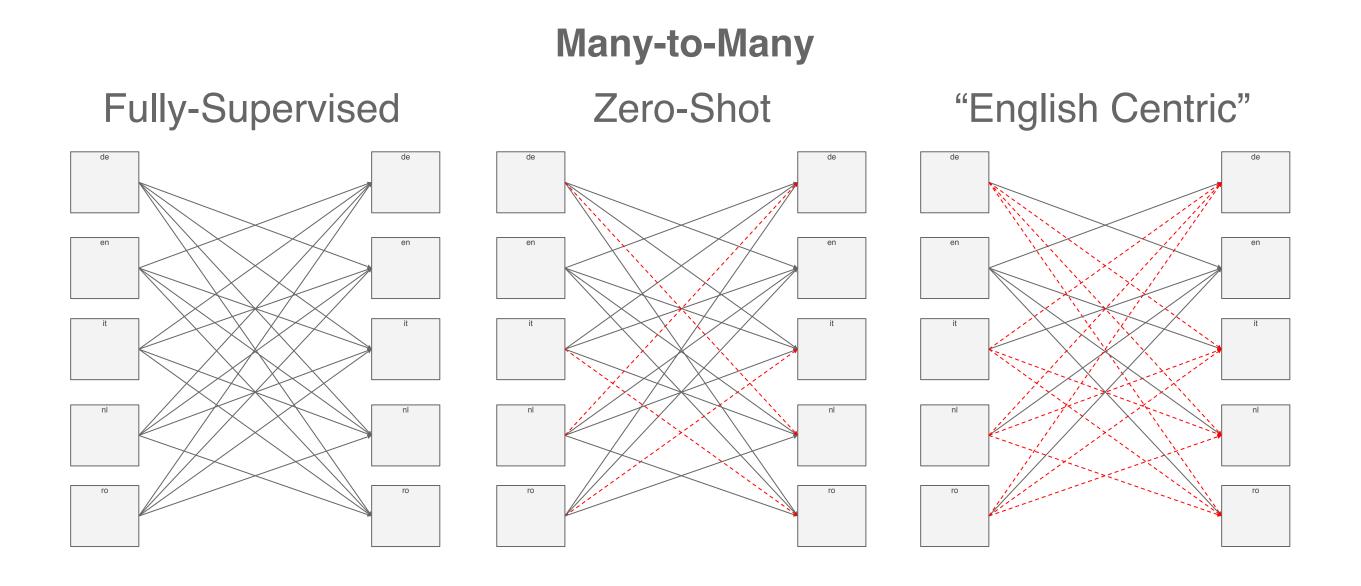
Many-to-Many

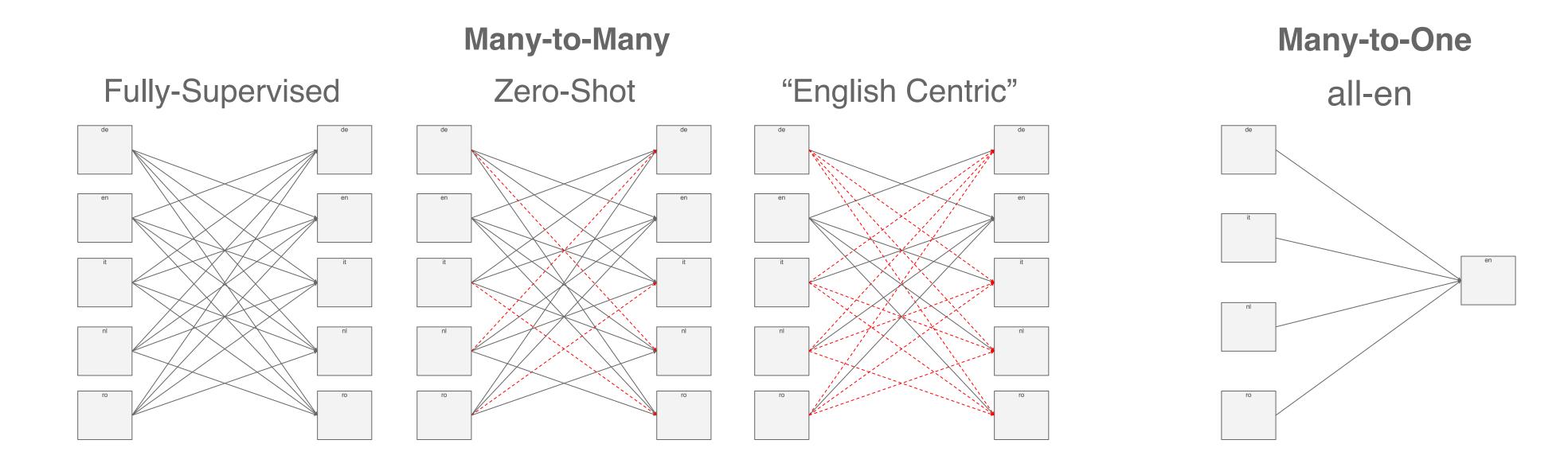
Many-to-Many

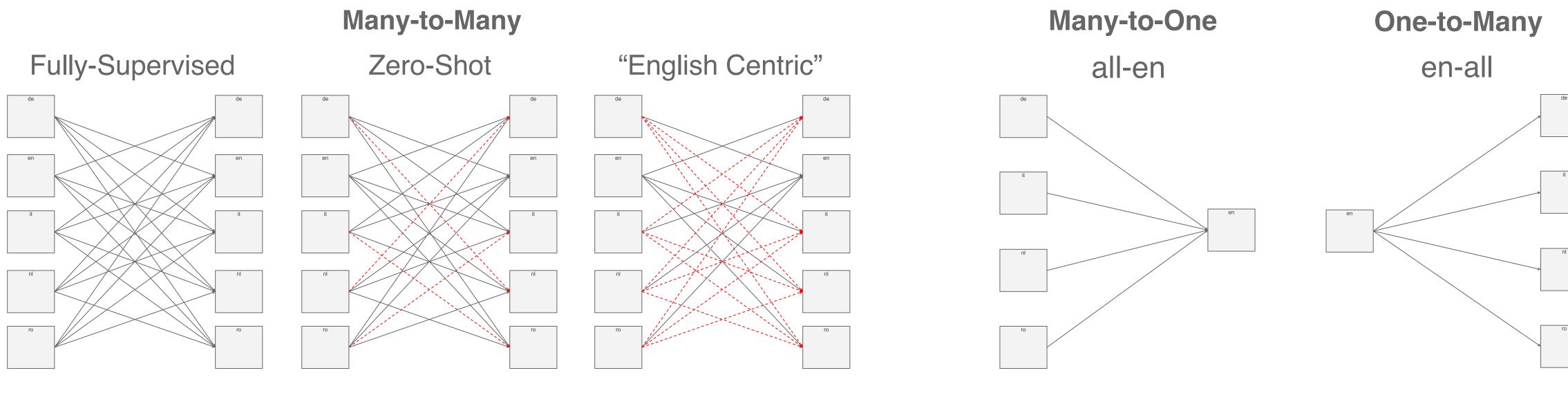


Fully-Supervised



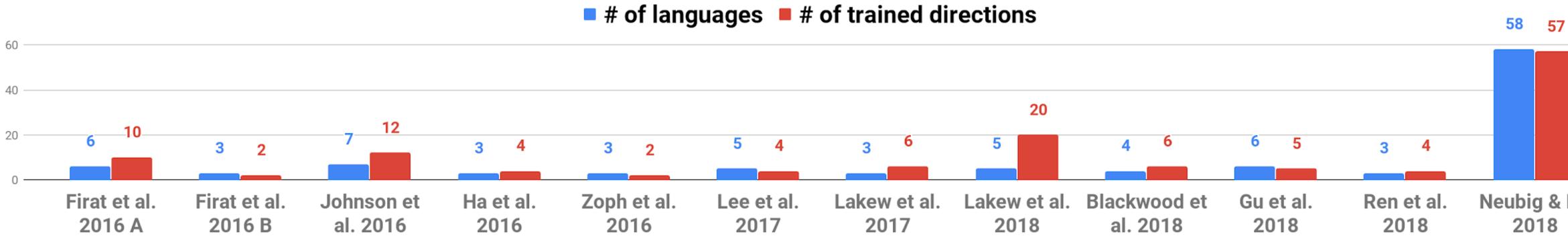


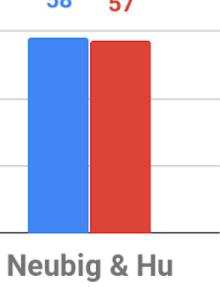




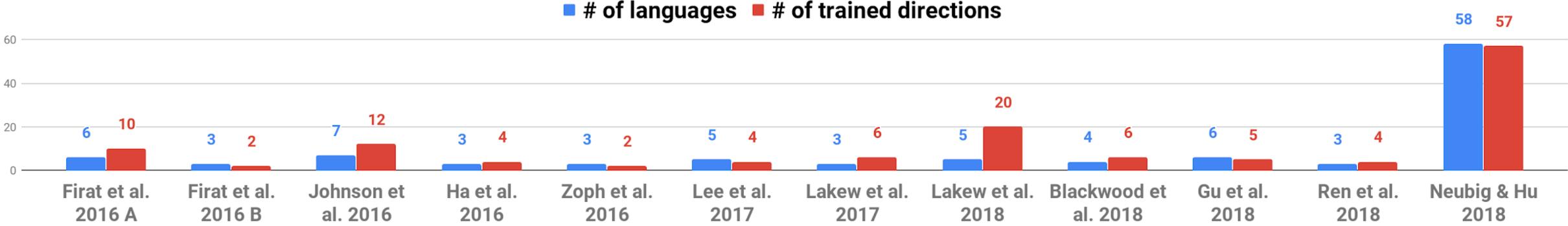


 Most works until 2018 - up to 5 languages, 20 translation directions (one outlier)





- Most works until 2018 up to 5 languages, 20 translation directions (one outlier)
- Why stop here?



Massively Multilingual Neural Machine Translation

Roee Aharoni*

Bar Ilan University Ramat-Gan Israel roee.aharoni@gmail.com Melvin Johnson and Orhan Firat

Google AI Mountain View California melvinp, orhanf@google.com

Low resource experiments: The TED talks dataset

• Low resource experiments: The TED talks dataset

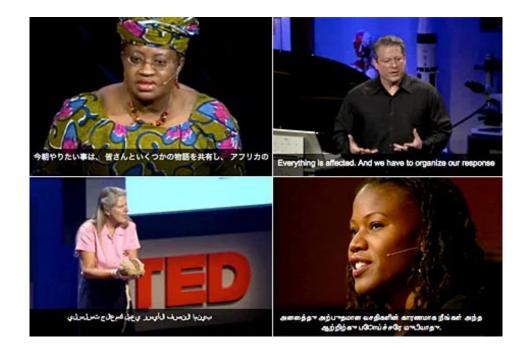
Uncategorized

- Low resource experiments: The TED talks dataset
 - 58 languages, to and from English

Uncategorized

- Low resource experiments: The TED talks dataset
 - 58 languages, to and from English
 - 3k-214k training examples per language imbalanced

Uncategorized



- Low resource experiments: The TED talks dataset
 - 58 languages, to and from English
 - 3k-214k training examples per language imbalanced
 - 258k original sentences in train set \rightarrow mostly multi-way parallel

Uncategorized

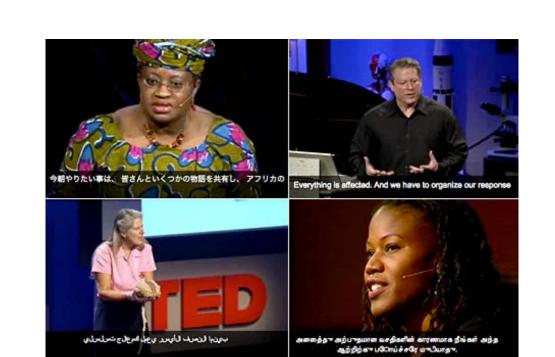
- Low resource experiments: The TED talks dataset
 - 58 languages, to and from English
 - 3k-214k training examples per language imbalanced
 - 258k original sentences in train set \rightarrow mostly multi-way parallel
- Transformer-Base models, similar capacity (93M parameters)

Jncategorized

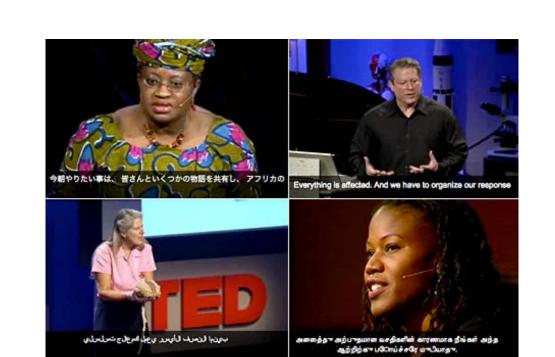
- Low resource experiments: The TED talks dataset
 - 58 languages, to and from English
 - 3k-214k training examples per language imbalanced
 - 258k original sentences in train set \rightarrow mostly multi-way parallel
- Transformer-Base models, similar capacity (93M parameters)
 - Shared wordpiece vocabulary, 32k symbols

Jncategorized

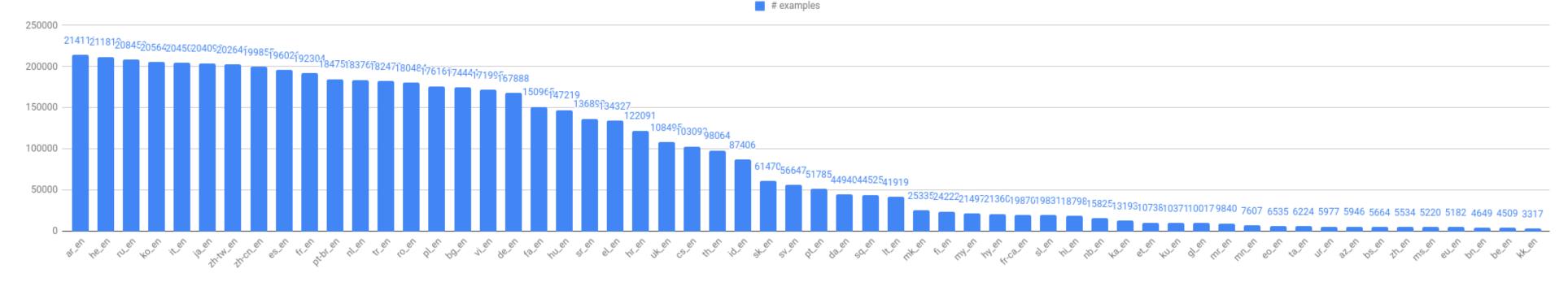
- Low resource experiments: The TED talks dataset
 - 58 languages, to and from English
 - 3k-214k training examples per language imbalanced
 - 258k original sentences in train set \rightarrow mostly multi-way parallel
- Transformer-Base models, similar capacity (93M parameters)
 - Shared wordpiece vocabulary, 32k symbols
 - Many-to-Many (English-Centric), Many-to-One, One-to-Many, One-to-One



- Low resource experiments: The TED talks dataset
 - 58 languages, to and from English
 - 3k-214k training examples per language imbalanced
 - 258k original sentences in train set \rightarrow mostly multi-way parallel
- Transformer-Base models, similar capacity (93M parameters)
 - Shared wordpiece vocabulary, 32k symbols
 - Many-to-Many (English-Centric), Many-to-One, One-to-Many, One-to-One
 - Joint Multilingual models



- Low resource experiments: The TED talks dataset
 - 58 languages, to and from English
 - 3k-214k training examples per language imbalanced
 - 258k original sentences in train set \rightarrow mostly multi-way parallel
- Transformer-Base models, similar capacity (93M parameters)
 - Shared wordpiece vocabulary, 32k symbols
 - Many-to-Many (English-Centric), Many-to-One, One-to-Many, One-to-One
 - Joint Multilingual models



Uncategorized

 Multilingual models significantly outperform baselines

	Az-En	Be-En	Gl-En	Sk-En	Avg.
# of examples	5.9k	4.5k	10k	61k	20.3k
Neubig & Hu 18					
baselines	2.7	2.8	16.2	24	11.42
many-to-one	11.7	18.3	29.1	28.3	21.85
Ours					
many-to-one	11.24	18.28	28.63	26.78	21.23
many-to-many	12.78	21.73	30.65	29.54	23.67

- Multilingual models significantly outperform baselines
- Many-to-Many models outperform finetuned Many-to-One models

	Az-En	Be-En	Gl-En	Sk-En	Avg.
# of examples	5.9k	4.5k	10k	61k	20.3k
Neubig & Hu 18					
baselines	2.7	2.8	16.2	24	11.42
many-to-one	11.7	18.3	29.1	28.3	21.85
Ours					
many-to-one	11.24	18.28	28.63	26.78	21.23
many-to-many	12.78	21.73	30.65	29.54	23.67

- Multilingual models significantly outperform baselines
- Many-to-Many models outperform finetuned Many-to-One models
- Similar result in language pairs with more data (baselines stronger here)

	Az-En	Be-En	Gl-En	Sk-En	Avg.
# of examples	5.9k	4.5k	10k	61k	20.3k
Neubig & Hu 18					
baselines	2.7	2.8	16.2	24	11.42
many-to-one	11.7	18.3	29.1	28.3	21.85
Ours					
many-to-one	11.24	18.28	28.63	26.78	21.23
many-to-many	12.78	21.73	30.65	29.54	23.67

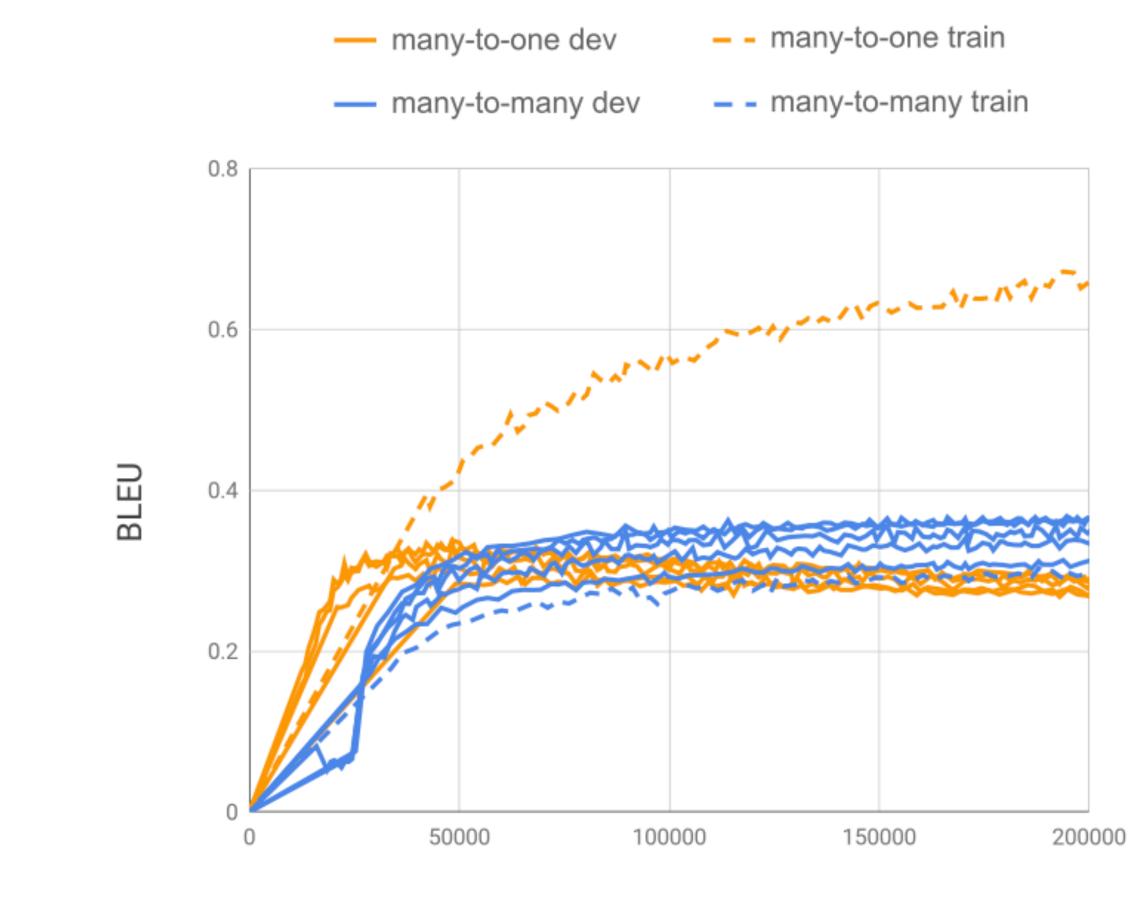
	Ar-En	De-En	He-En	It-En	Avg.
# of examples	213k	167k	211k	203k	198.5k
baselines	27.84	30.5	34.37		
many-to-one	25.93	28.87	30.19	32.42	29.35
many-to-many	28.32	32.97	33.18	35.14	32.4

- Multilingual models significantly outperform baselines
- Many-to-Many models outperform finetuned Many-to-One models
- Similar result in language pairs with more data (baselines stronger here)
- Why? many-to-many is "harder" 🧐

	Az-En	Be-En	Gl-En	Sk-En	Avg.
# of examples	5.9k	4.5k	10k	61k	20.3k
Neubig & Hu 18					
baselines	2.7	2.8	16.2	24	11.42
many-to-one	11.7	18.3	29.1	28.3	21.85
Ours					
many-to-one	11.24	18.28	28.63	26.78	21.23
many-to-many	12.78	21.73	30.65	29.54	23.67

	Ar-En	De-En	He-En	It-En	Avg.
# of examples	213k	167k	211k	203k	198.5k
baselines	27.84	30.5	34.37		
many-to-one	25.93	28.87	30.19	32.42	29.35
many-to-many	28.32	32.97	33.18	35.14	32.4

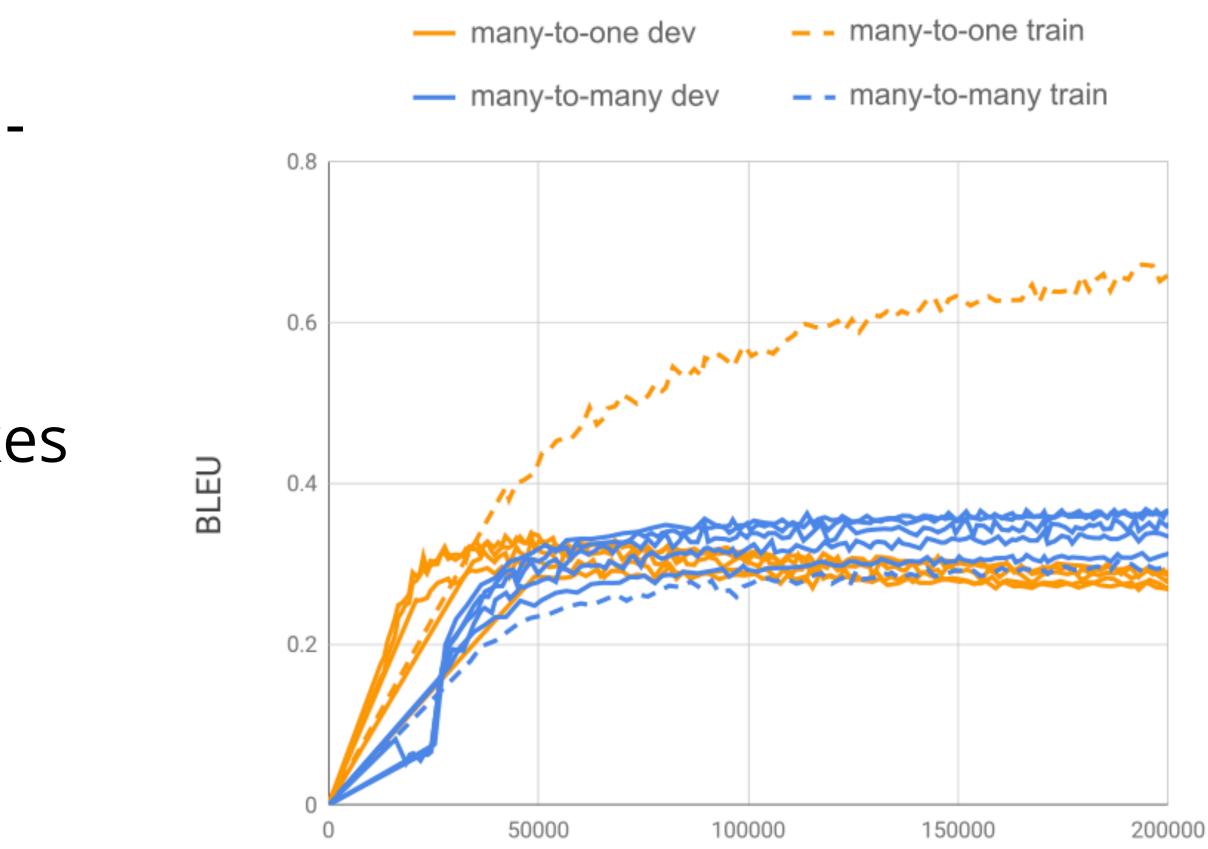
 The models we used are very large prone to overfitting on the small datasets



update

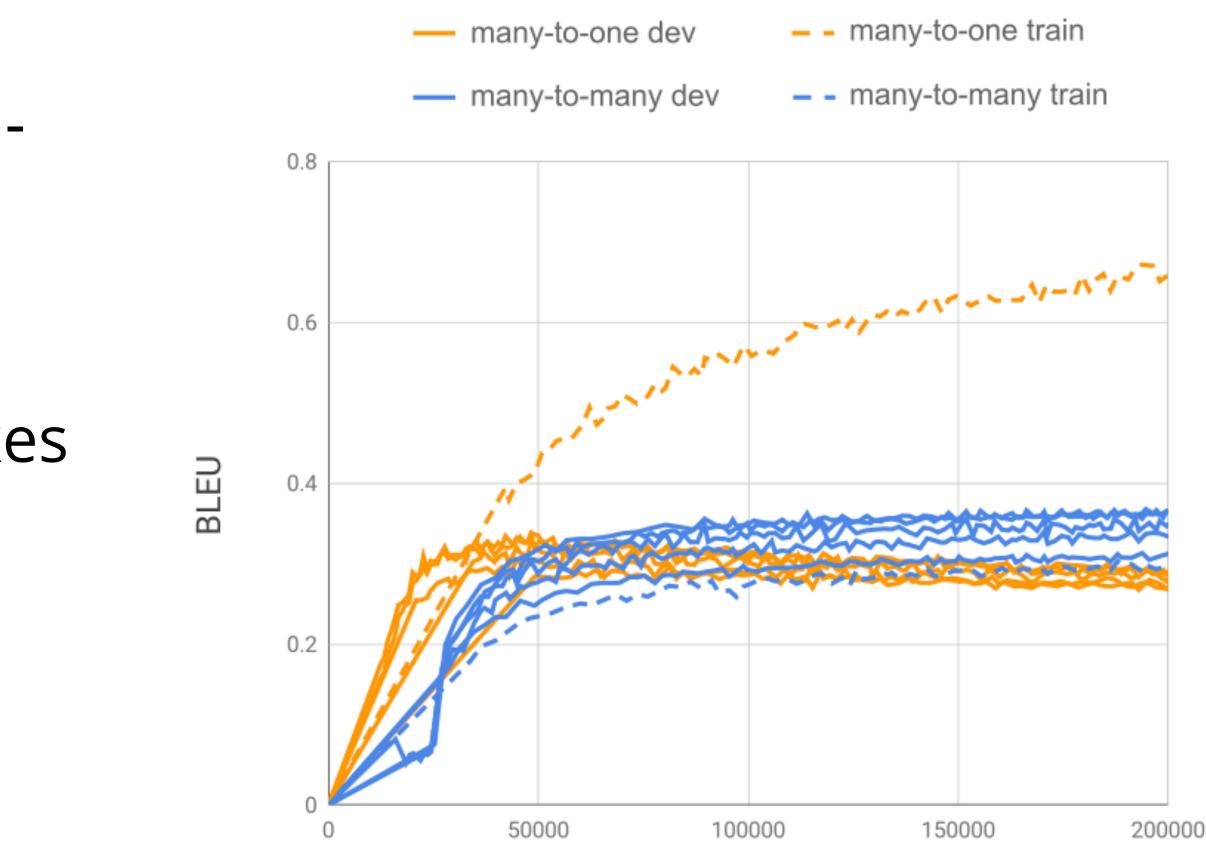


- The models we used are very large prone to overfitting on the small datasets
- Having many target languages makes it harder to memorize, even with small data



update

- The models we used are very large prone to overfitting on the small datasets
- Having many target languages makes it harder to memorize, even with small data
- Also easy to memorize since multiway parallel



update

 One-to-Many outperform Many-to-Many and baselines

	En-Az	En-Be	En-Gl	En-Sk	Avg.
# of examples	5.9k	4.5k	10k	61k	20.3k
baselines	2.16	2.47	3.26	5.8	3.42
one-to-many	5.06	10.72	26.59	24.52	16.72
many-to-many	3.9	7.24	23.78	21.83	14.19
	En-Ar	En-De	En-He	En-It	Avg.
# of examples	En-Ar 213k	En-De 167k	En-He 211k	En-It 203k	Avg. 198.5k
# of examples baselines					
-	213k	167k	211k	203k	198.5k

- One-to-Many outperform Many-to-Many and baselines
- Many-to-Many models are biased towards English in the target

	En-Az	En-Be	En-Gl	En-Sk	Avg.
# of examples	5.9k	4.5k	10k	61k	20.3k
baselines	2.16	2.47	3.26	5.8	3.42
one-to-many	5.06	10.72	26.59	24.52	16.72
many-to-many	3.9	7.24	23.78	21.83	14.19
	En-Ar	En-De	En-He	En-It	Avg.
# of examples	En-Ar 213k	En-De 167k	En-He 211k	En-It 203k	Avg. 198.5k
# of examples baselines					
-	213k	167k	211k	203k	198.5k

- One-to-Many outperform Many-to-Many and baselines
- Many-to-Many models are biased towards English in the target
- When English memorization is not an issue, better to train on fewer directions

	En-Az	En-Be	En-Gl	En-Sk	Avg.
# of examples	5.9k	4.5k	10k	61k	20.3k
baselines	2.16	2.47	3.26	5.8	3.42
one-to-many	5.06	10.72	26.59	24.52	16.72
many-to-many	3.9	7.24	23.78	21.83	14.19
	En-Ar	En-De	En-He	En-It	Avg.
# of examples	En-Ar 213k	En-De 167k	En-He 211k	En-It 203k	Avg. 198.5k
# of examples baselines					
-	213k	167k	211k	203k	198.5k

• We saw that:

- We saw that:
 - Massively multilingual many-to-many models win when going into-English (reduce memorization)

- We saw that:
 - Massively multilingual many-to-many models win when going into-English (reduce memorization)
 - One-to-many models are better when going out of English (not biased to English)

- We saw that:
 - Massively multilingual many-to-many models win when going into-English (reduce memorization)
 - One-to-many models are better when going out of English (not biased to English)
- Does this hold:

- We saw that:
 - Massively multilingual many-to-many models win when going into-English (reduce memorization)
 - One-to-many models are better when going out of English (not biased to English)
- Does this hold:
 - With even more languages?

- We saw that:
 - Massively multilingual many-to-many models win when going into-English (reduce memorization)
 - One-to-many models are better when going out of English (not biased to English)
- Does this hold:
 - With even more languages?
 - With larger, balanced, "real-world" datasets?

Transformer Big(ger) models

- Transformer Big(ger) models
 - 473.7M parameters (vs. 213M in Big)

- Transformer Big(ger) models
 - 473.7M parameters (vs. 213M in Big)
 - Joint subword vocabulary with 64k symbols (24k unique characters)

- Transformer Big(ger) models
 - 473.7M parameters (vs. 213M in Big)
 - Joint subword vocabulary with 64k symbols (24k unique characters)
- In-house dataset

- Transformer Big(ger) models
 - 473.7M parameters (vs. 213M in Big)
 - Joint subword vocabulary with 64k symbols (24k unique characters)
- In-house dataset
 - English-Centric: 102 Languages to/from English (mirrored) •

Experiments - High Resource

- Transformer Big(ger) models
 - 473.7M parameters (vs. 213M in Big)
 - Joint subword vocabulary with 64k symbols (24k unique characters)
- In-house dataset
 - English-Centric: 102 Languages to/from English (mirrored) •
 - ~1M examples per language pair (balanced)

Experiments - High Resource

- Transformer Big(ger) models
 - 473.7M parameters (vs. 213M in Big)
 - Joint subword vocabulary with 64k symbols (24k unique characters)
- In-house dataset
 - English-Centric: 102 Languages to/from English (mirrored) •
 - ~1M examples per language pair (balanced)
 - Not multi-way parallel

		Az									-
		16.3									
many-to-one	26.04	23.68	25.36	35.05	33.61	35.69	36.28	36.33	28.35	29.75	31.01
many-to-many	22.17	21.45	23.03	37.06	30.71	35.0	36.18	36.57	29.8 7	27.64	29.97

Many-to-one model outperforms baselines and Many-to-Many

										Tr	
	23.34										
many-to-one	26.04	23.68	25.36	35.05	33.61	35.69	36.28	36.33	28.35	29.75	31.01
many-to-many	22.17	21.45	23.03	37.06	30.71	35.0	36.18	36.57	29.87	27.64	29.97

- Many-to-one model outperforms baselines and Many-to-Many
 - When the data is large enough and not multi-way-parallel, memorization is not an issue and "less is more"

	Ar	Az	Be	De	He	It	N 1	Ro	Sk	Tr	Avg.
	23.34										
many-to-one											
many-to-many	22.17	21.45	23.03	37.06	30.71	35.0	36.18	36.57	29.87	27.64	29.97

- Many-to-one model outperforms baselines and Many-to-Many
 - When the data is large enough and not multi-way-parallel, memorization is not an issue and "less is more"
- German and Italian outliers due to interference

	Ar	Az	Be	De	He	It	N 1	Ro	Sk	Tr	Avg.
baselines	23.34	16.3	21.93	30.18	31.83	36.47	36.12	34.59	24.01	27.13	28.19
many-to-one											
many-to-many	22.17	21.45	23.03	37.06	30.71	35.0	36.18	36.57	29.87	27.64	29.97

- Many-to-one model outperforms baselines and Many-to-Many
 - When the data is large enough and not multi-way-parallel, memorization is not an issue and "less is more"
- German and Italian outliers due to interference
 - Many-to-one reached 38 BLEU when evaluated using German only devset, but degraded

				De							-
baselines	10.57	8.07	15.3	23.24	19.47	31.42	28.68	27.92	11.08	15.54	19.13
one-to-many	12.08	9.92	15.6	31.39	20.01	33	31.06	28.43	17.67	17.68	21.68
many-to-many	10.57	9.84	14.3	28.48	17.91	30.39	29.67	26.23	18.15	15.58	20.11

Clear advantage to the one-to-many model in all cases

				De							
				23.24							
one-to-many	12.08	9.92	15.6	31.39	20.01	33	31.06	28.43	17.67	17.68	21.68
many-to-many	10.57	9.84	14.3	28.48	17.91	30.39	29.67	26.23	18.15	15.58	20.11

- Clear advantage to the one-to-many model in all cases
- Up to 6-8 BLEU improvement over baseline (Slovak, German)

				De							
baselines	10.57	8.07	15.3	23.24	19.47	31.42	28.68	27.92	11.08	15.54	19.13
one-to-many	12.08	9.92	15.6	31.39	20.01	33	31.06	28.43	17.67	17.68	21.68
many-to-many	10.57	9.84	14.3	28.48	17.91	30.39	29.67	26.23	18.15	15.58	20.11

- Clear advantage to the one-to-many model in all cases
- Up to 6-8 BLEU improvement over baseline (Slovak, German)
- Less burden, not biased towards English

• The previous experiments present an extreme case (100+ languages in a single model)

- The previous experiments present an extreme case (100+ languages in a single model)
- What is the trade-off between the number of languages and model performance?

- The previous experiments present an extreme case (100+ languages in a single model)
- What is the trade-off between the number of languages and model performance?
 - Both supervised and Zero-Shot •

- The previous experiments present an extreme case (100+ languages in a single model)
- What is the trade-off between the number of languages and model performance?
 - Both supervised and Zero-Shot •
- Keep model fixed, measure performance on 5 languages • while varying the number of additional languages

	Ar-En	En-Ar	Fr-En	En-Fr	Ru-En	En-Ru	Uk-En	En-Uk	Avg.
5-to-5	23.87	12.42	38.99	37.3	29.07	24.86	26.17	16.48	26.14
25-to-25	23.43	11.77	38.87	36.79	29.36	23.24	25.81	17.17	25.8
50-to-50	23.7	11.65	37.81	35.83	29.22	21.95	26.02	15.32	25.18
75-to-75	22.23	10.69	37.97	34.35	28.55	20.7	25.89	14.59	24.37
103-to-103	21.16	10.25	35.91	34.42	27.25	19.9	24.53	13.89	23.41

	Ar-En	En-Ar	Fr-En	En-Fr	Ru-En	En-Ru	Uk-En	En-Uk	Avg.
5-to-5	23.87	12.42	38.99	37.3	29.07	24.86	26.17	16.48	26.14
25-to-25	23.43	11.77	38.87	36.79	29.36	23.24	25.81	17.17	25.8
50-to-50	23.7	11.65	37.81	35.83	29.22	21.95	26.02	15.32	25.18
75-to-75	22.23	10.69	37.97	34.35	28.55	20.7	25.89	14.59	24.37
103-to-103	21.16	10.25	35.91	34.42	27.25	19.9	24.53	13.89	23.41

Clear trade-off between number of languages and model accuracy

	Ar-En	En-Ar	Fr-En	En-Fr	Ru-En	En-Ru	Uk-En	En-Uk	Avg.
5-to-5	23.87	12.42	38.99	37.3	29.07	24.86	26.17	16.48	26.14
25-to-25	23.43	11.77	38.87	36.79	29.36	23.24	25.81	17.17	25.8
50-to-50	23.7	11.65	37.81	35.83	29.22	21.95	26.02	15.32	25.18
75-to-75	22.23	10.69	37.97	34.35	28.55	20.7	25.89	14.59	24.37
103-to-103	21.16	10.25	35.91	34.42	27.25	19.9	24.53	13.89	23.41

- pair is not very large... (in MT scale)

Clear trade-off between number of languages and model accuracy

Maybe we need even bigger models? 1M examples per language

 50-to-50 strikes a good balance between capacity and generalization

	Ar-Fr	Fr-Ar	Ru-Uk	Uk-Ru	Avg.
5-to-5	1.66	4.49	3.7	3.02	3.21
25-to-25	1.83	5.52	16.67	4.31	7.08
50-to-50	4.34	4.72	15.14	20.23	11.1
75-to-75	1.85	4.26	11.2	15.88	8.3
103-to-103	2.87	3.05	12.3	18.49	9.17

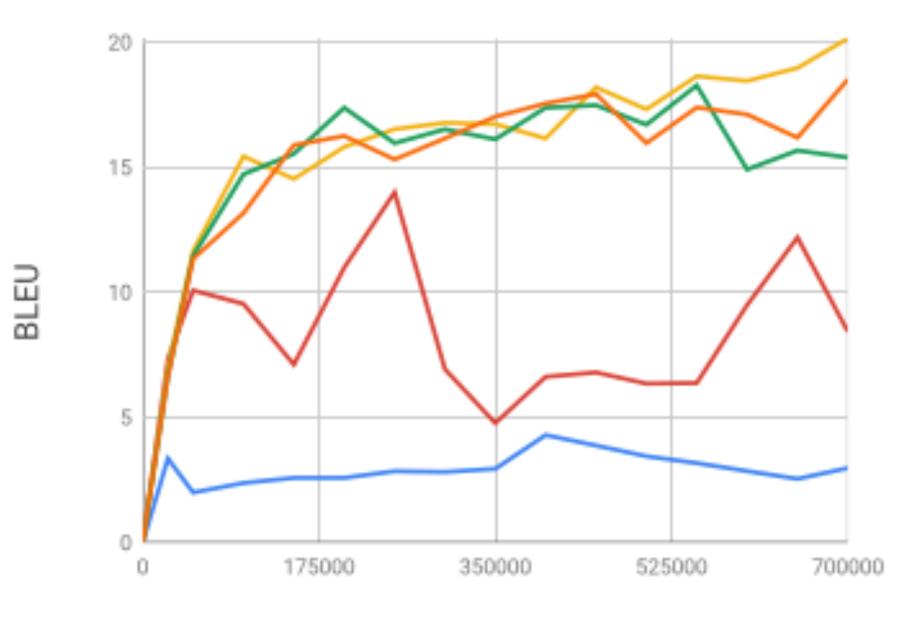
- 50-to-50 strikes a good balance between capacity and generalization
- Similar languages are much easier

	Ar-Fr	Fr-Ar	Ru-Uk	Uk-Ru	Avg.
5-to-5	1.66	4.49	3.7	3.02	3.21
25-to-25	1.83	5.52	16.67	4.31	7.08
50-to-50	4.34	4.72	15.14	20.23	11.1
75-to-75	1.85	4.26	11.2	15.88	8.3
103-to-103	2.87	3.05	12.3	18.49	9.17

- 50-to-50 strikes a good balance between capacity and generalization
- Similar languages are much easier
- General trend more languages, more generalization (interlingua?)

	Ar-Fr	Fr-Ar	Ru-Uk	Uk-Ru	Avg.
5-to-5	1.66	4.49	3.7	3.02	3.21
25-to-25	1.83	5.52	16.67	4.31	7.08
50-to-50	4.34	4.72	15.14	20.23	11.1
75-to-75	1.85	4.26	11.2	15.88	8.3
103-to-103	2.87	3.05	12.3	18.49	9.17

25-to-25 - 50-to-50 - 75-to-75 - 103-to-103



update

Kudugunta et al. 2019 investigated the • representations learned by massively multilingual models

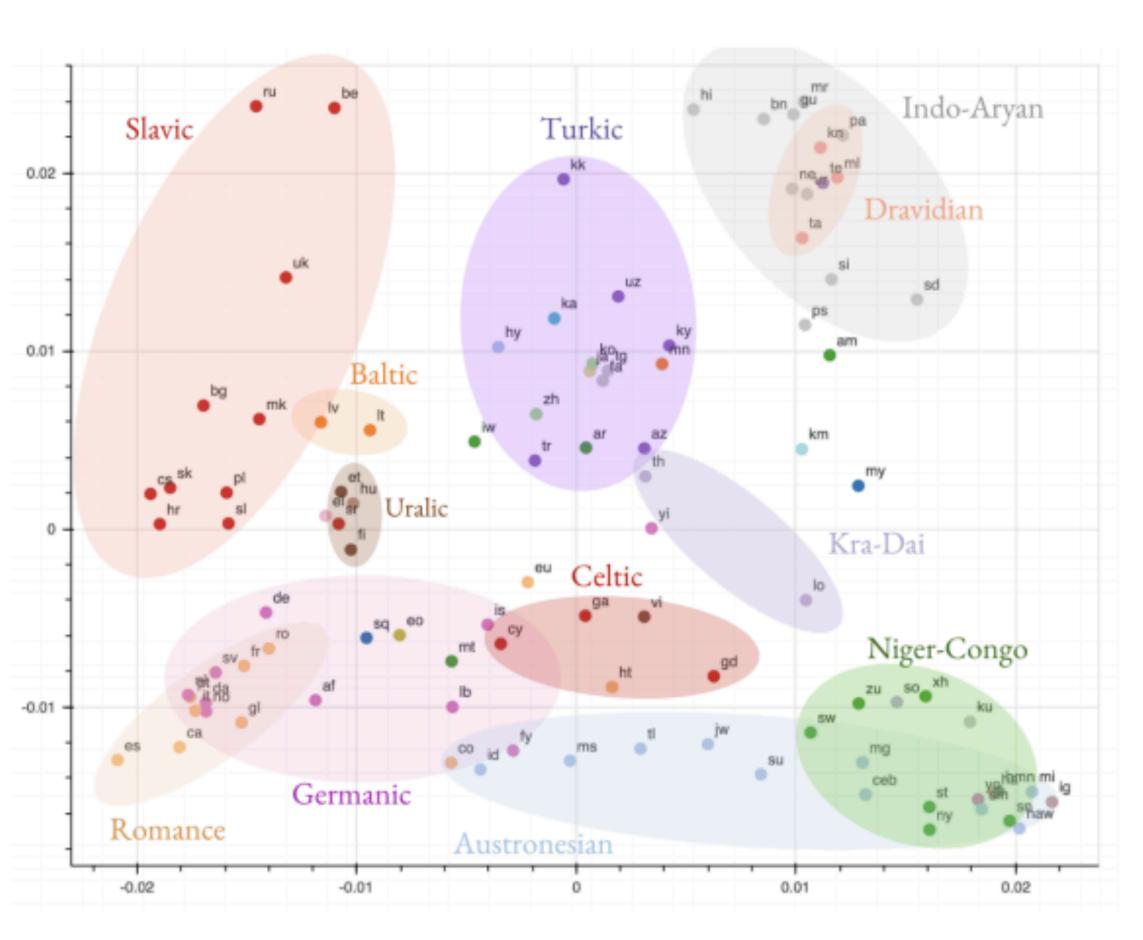


Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity. Languages are color-coded by their linguistic family. Best viewed in color.

- Kudugunta et al. 2019 investigated the • representations learned by massively multilingual models
- Encoder representations of different • languages cluster based on linguistic similarity

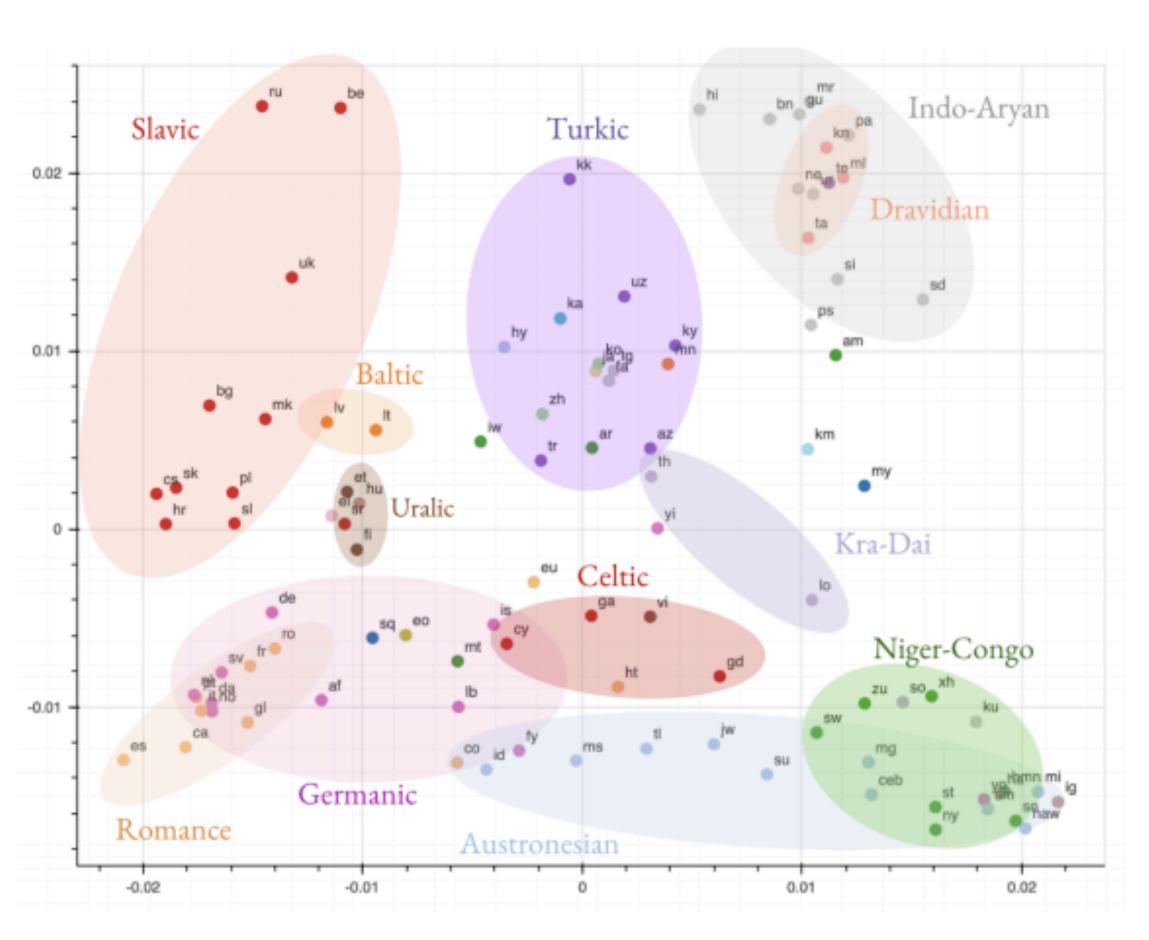


Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity. Languages are color-coded by their linguistic family. Best viewed in color.

- Kudugunta et al. 2019 investigated the • representations learned by massively multilingual models
- Encoder representations of different • languages cluster based on linguistic similarity
- Representations of a source language learned • by the encoder are dependent on the target language, and vice-versa

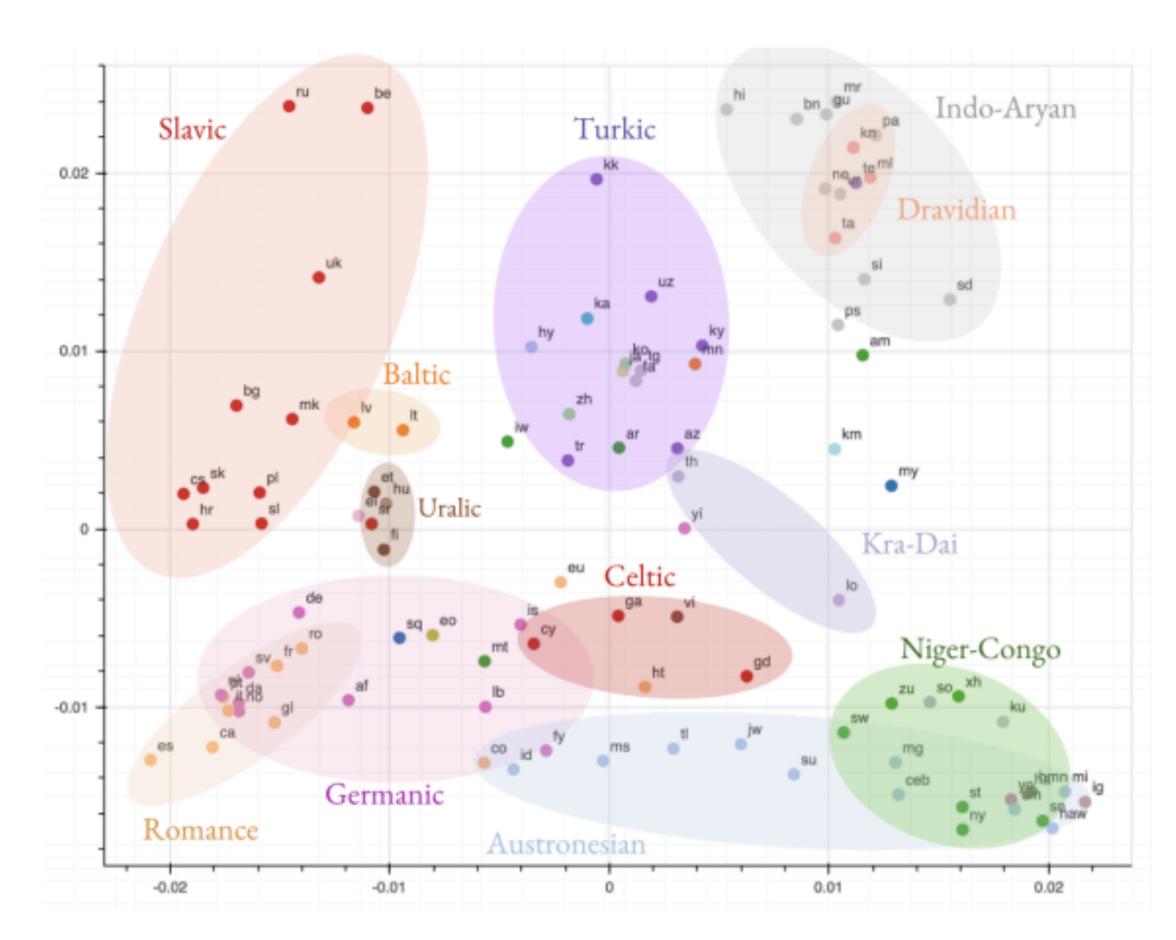


Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity. Languages are color-coded by their linguistic family. Best viewed in color.

- Kudugunta et al. 2019 investigated the • representations learned by massively multilingual models
- Encoder representations of different • languages cluster based on linguistic similarity
- Representations of a source language learned • by the encoder are dependent on the target language, and vice-versa
- Representations of high resource and/or • linguistically similar languages are more robust when fine-tuning on an arbitrary language pair

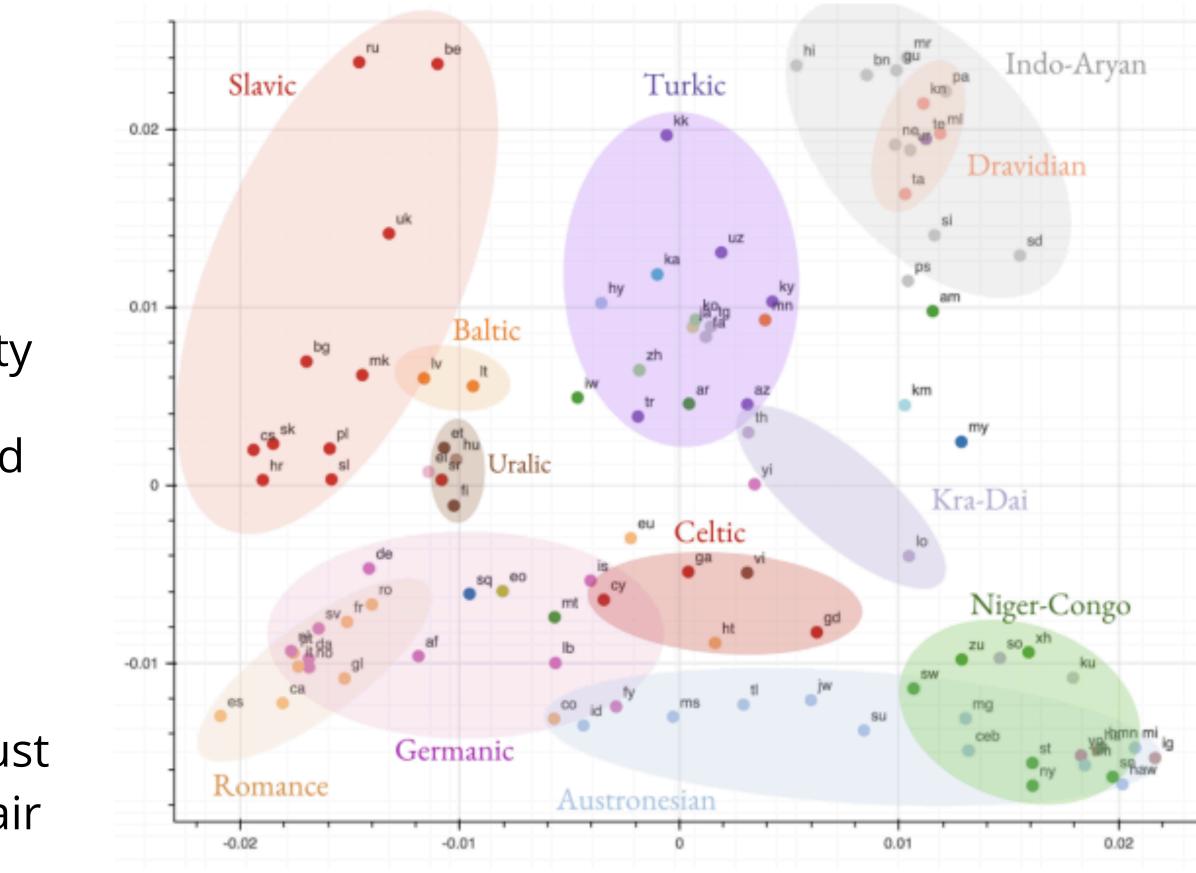


Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity. Languages are color-coded by their linguistic family. Best viewed in color.

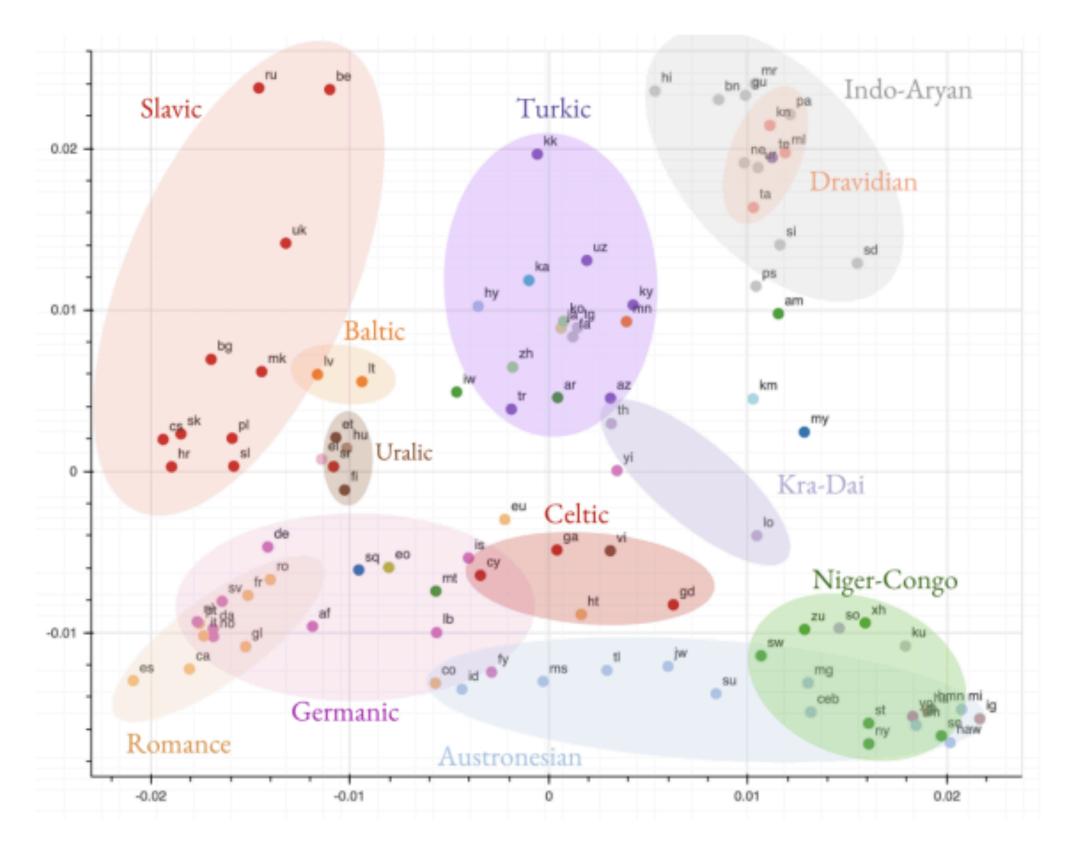


Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity. Languages are color-coded by their linguistic family. Best viewed in color.

•NMT is a strong tool, but needs some tweaks to work well

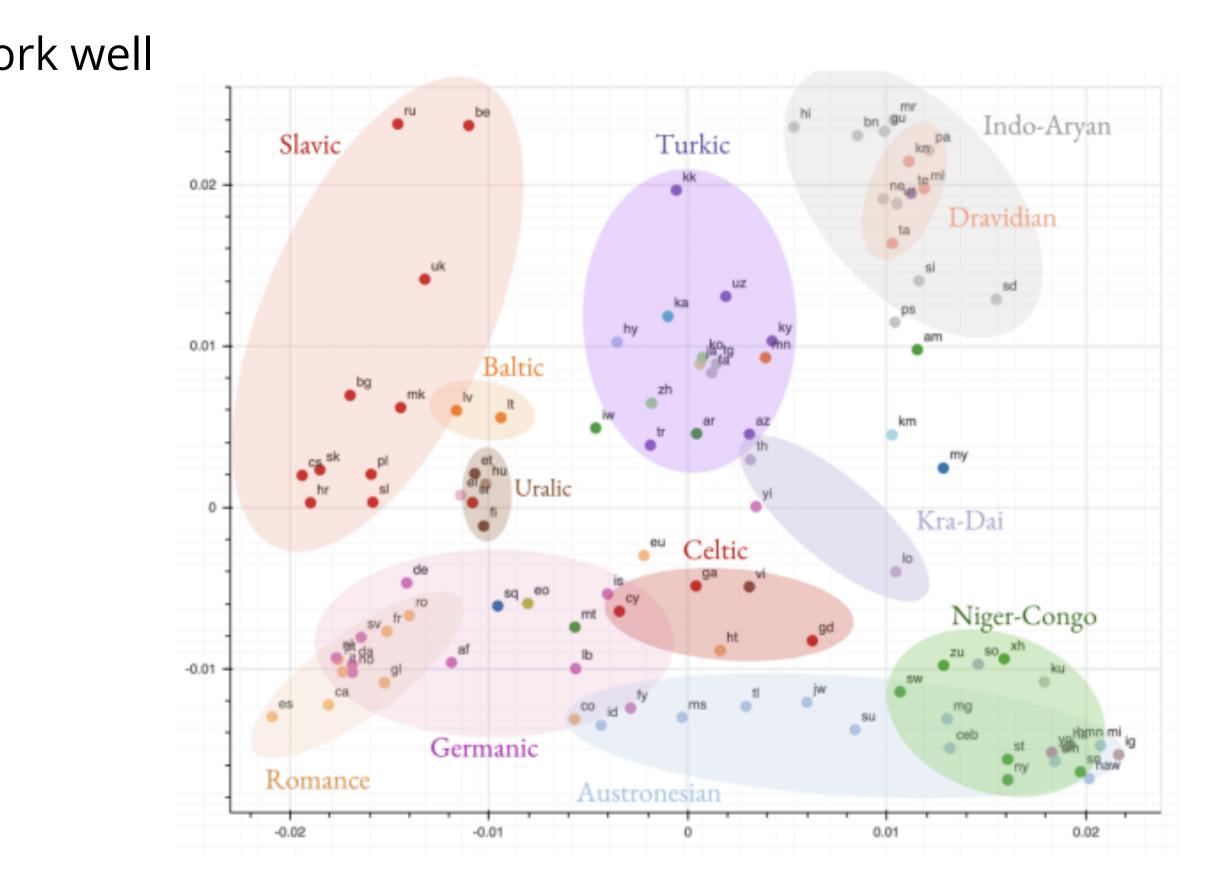


Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity. Languages are color-coded by their linguistic family. Best viewed in color.

- •NMT is a strong tool, but needs some tweaks to work well
- To handle **large vocabularies**:

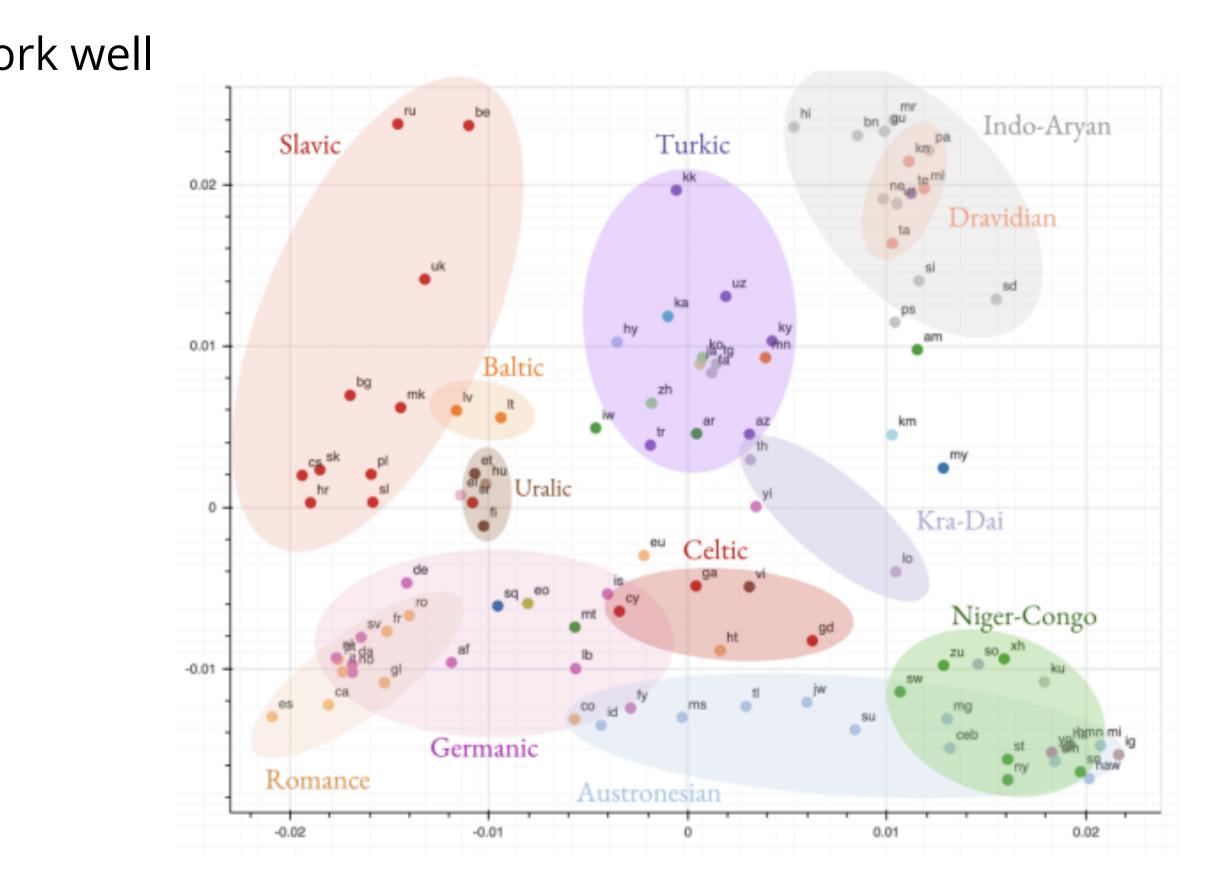


Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity. Languages are color-coded by their linguistic family. Best viewed in color.

- •NMT is a strong tool, but needs some tweaks to work well
- To handle large vocabularies:
 - •Word-based models + UNKs

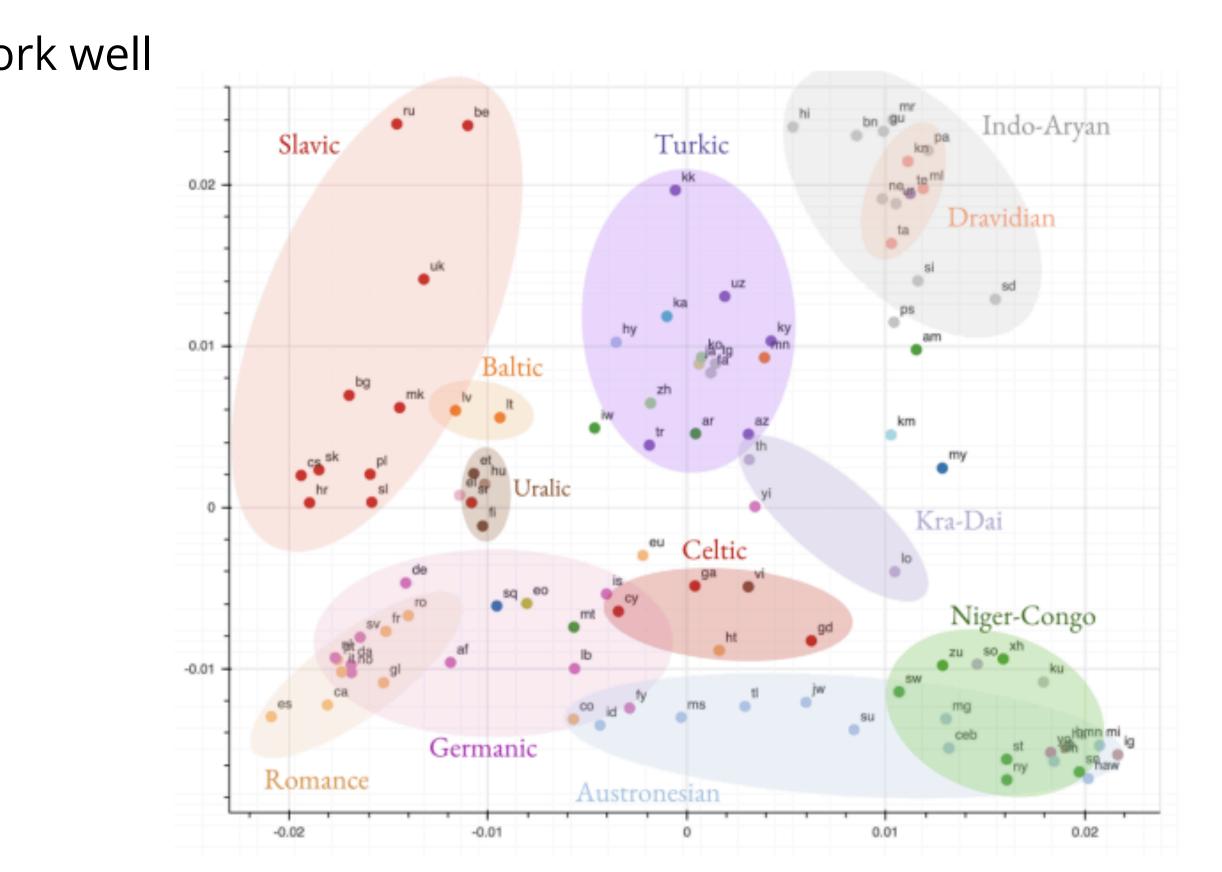


Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity. Languages are color-coded by their linguistic family. Best viewed in color.

- •NMT is a strong tool, but needs some tweaks to work well
- To handle **large vocabularies**:
 - •Word-based models + UNKs
 - Character level models

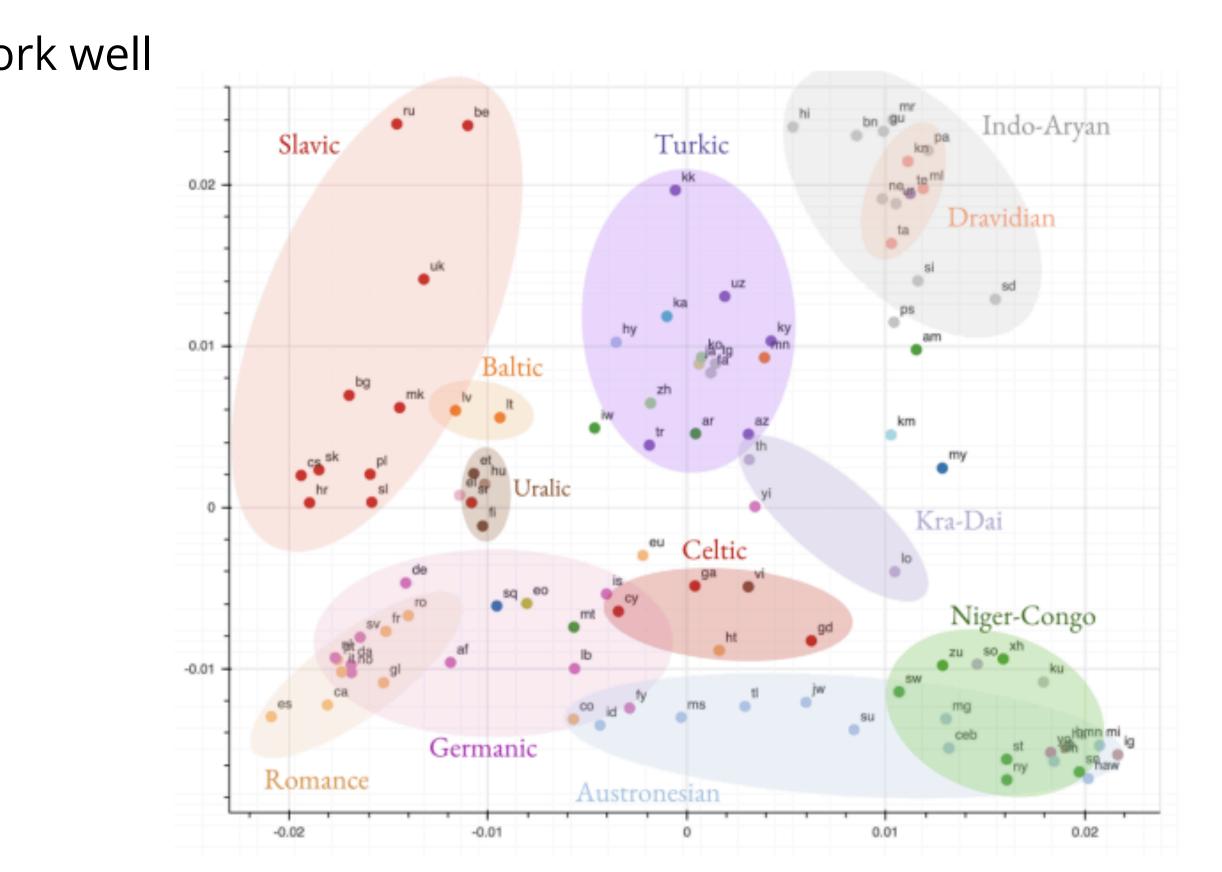


Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity. Languages are color-coded by their linguistic family. Best viewed in color.

- •NMT is a strong tool, but needs some tweaks to work well
- To handle large vocabularies:
 - •Word-based models + UNKs
 - Character level models
 - Middle-ground: subword models (BPE)

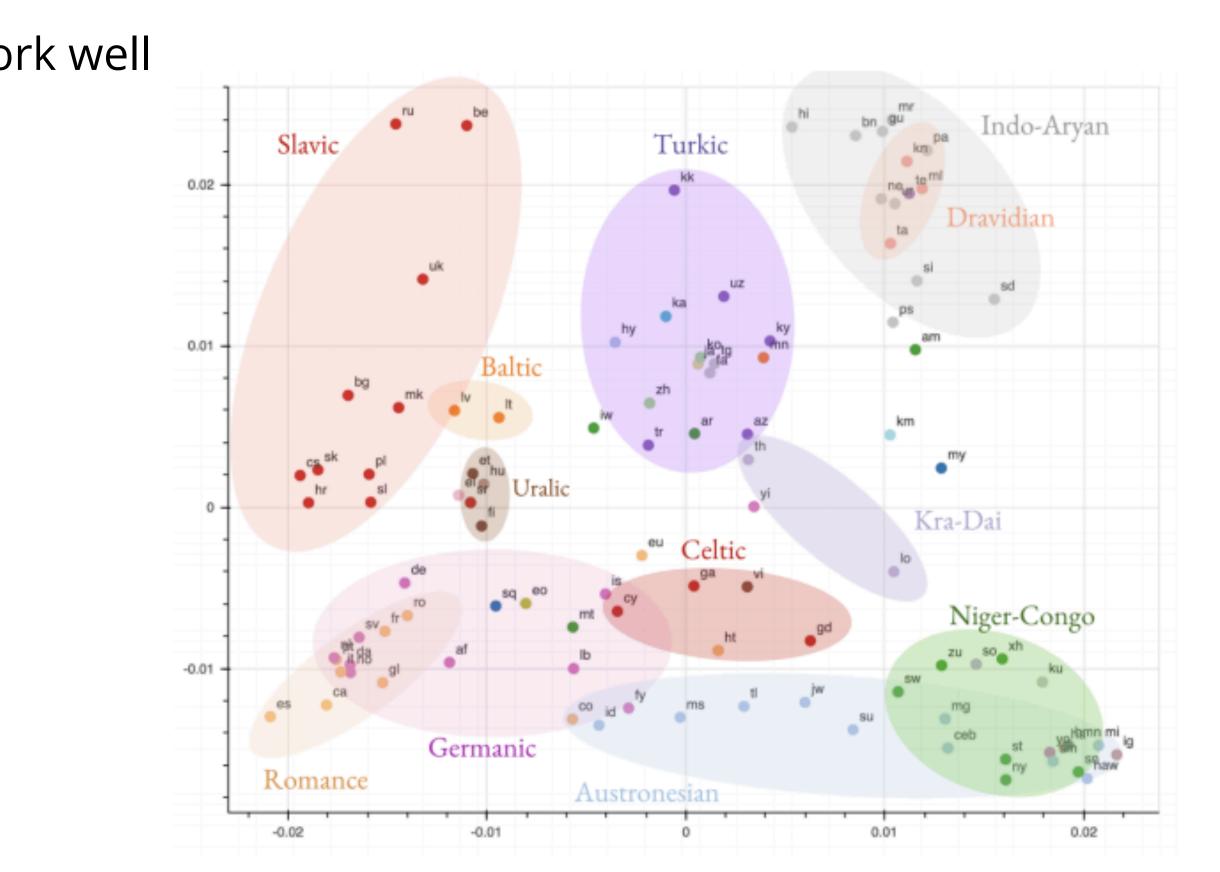


Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity. Languages are color-coded by their linguistic family. Best viewed in color.

- •NMT is a strong tool, but needs some tweaks to work well
- To handle large vocabularies:
 - •Word-based models + UNKs
 - Character level models
 - Middle-ground: subword models (BPE)
- •To use **monolingual data**:

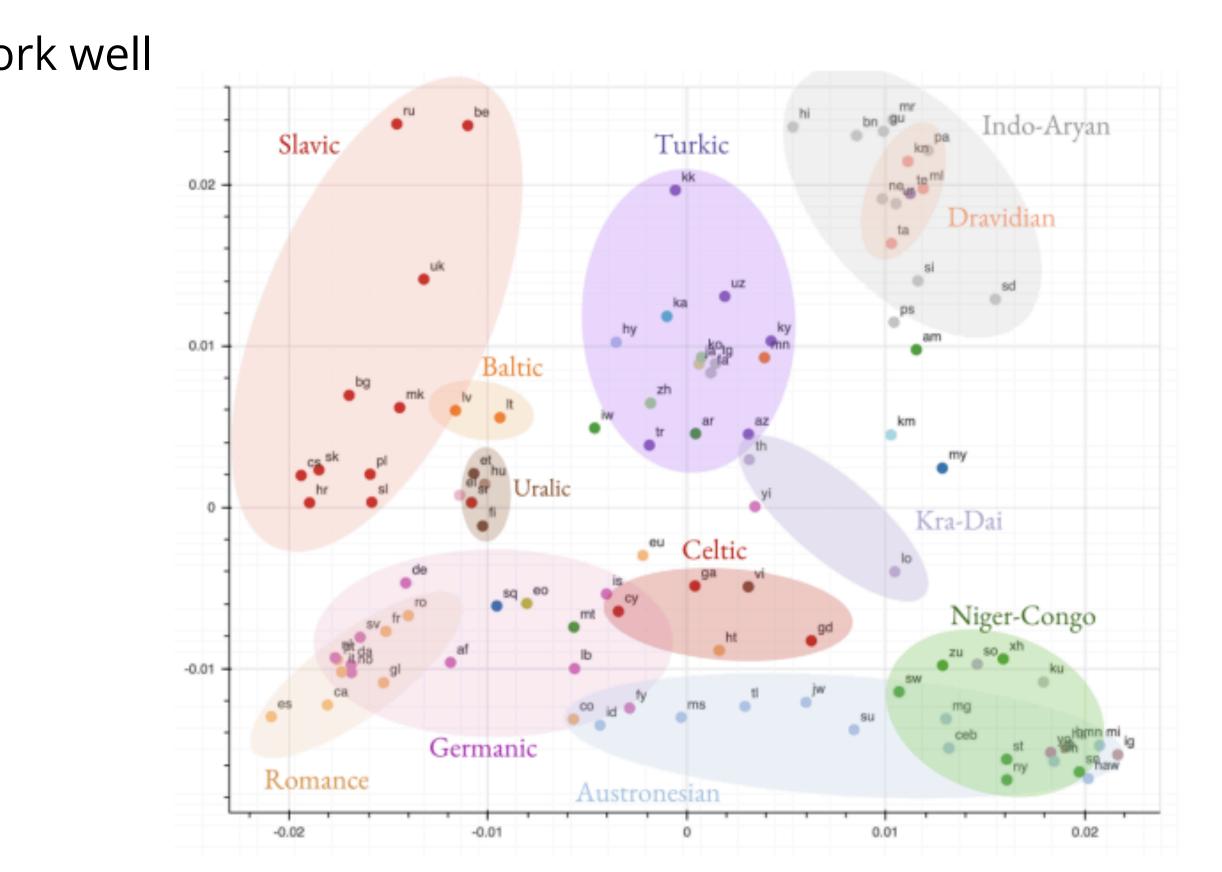


Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity. Languages are color-coded by their linguistic family. Best viewed in color.

- •NMT is a strong tool, but needs some tweaks to work well
- To handle large vocabularies:
 - •Word-based models + UNKs
 - Character level models
 - Middle-ground: subword models (BPE)
- •To use **monolingual data**:
 - Language model fusion

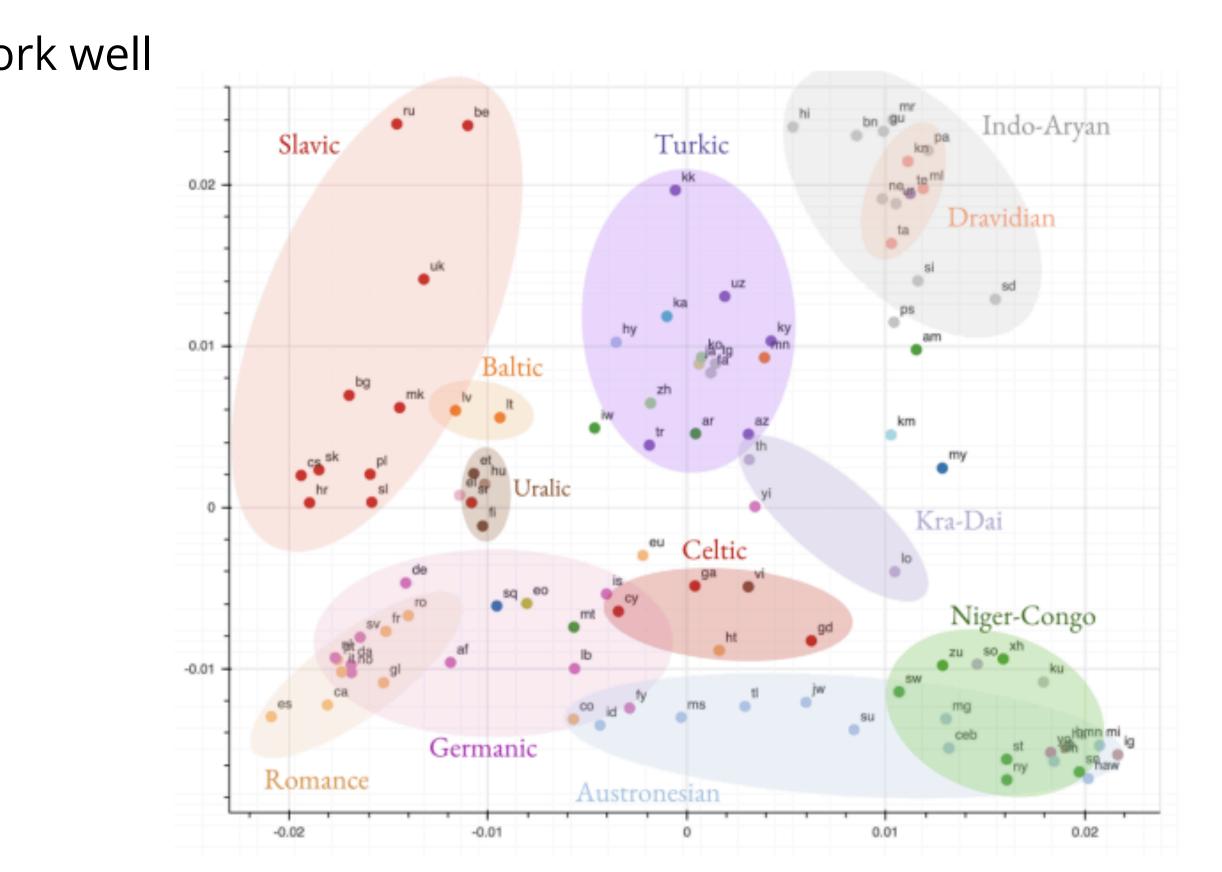


Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity. Languages are color-coded by their linguistic family. Best viewed in color.

- •NMT is a strong tool, but needs some tweaks to work well
- To handle large vocabularies:
 - •Word-based models + UNKs
 - Character level models
 - Middle-ground: subword models (BPE)
- •To use **monolingual data**:
 - Language model fusion
 - Back-translation

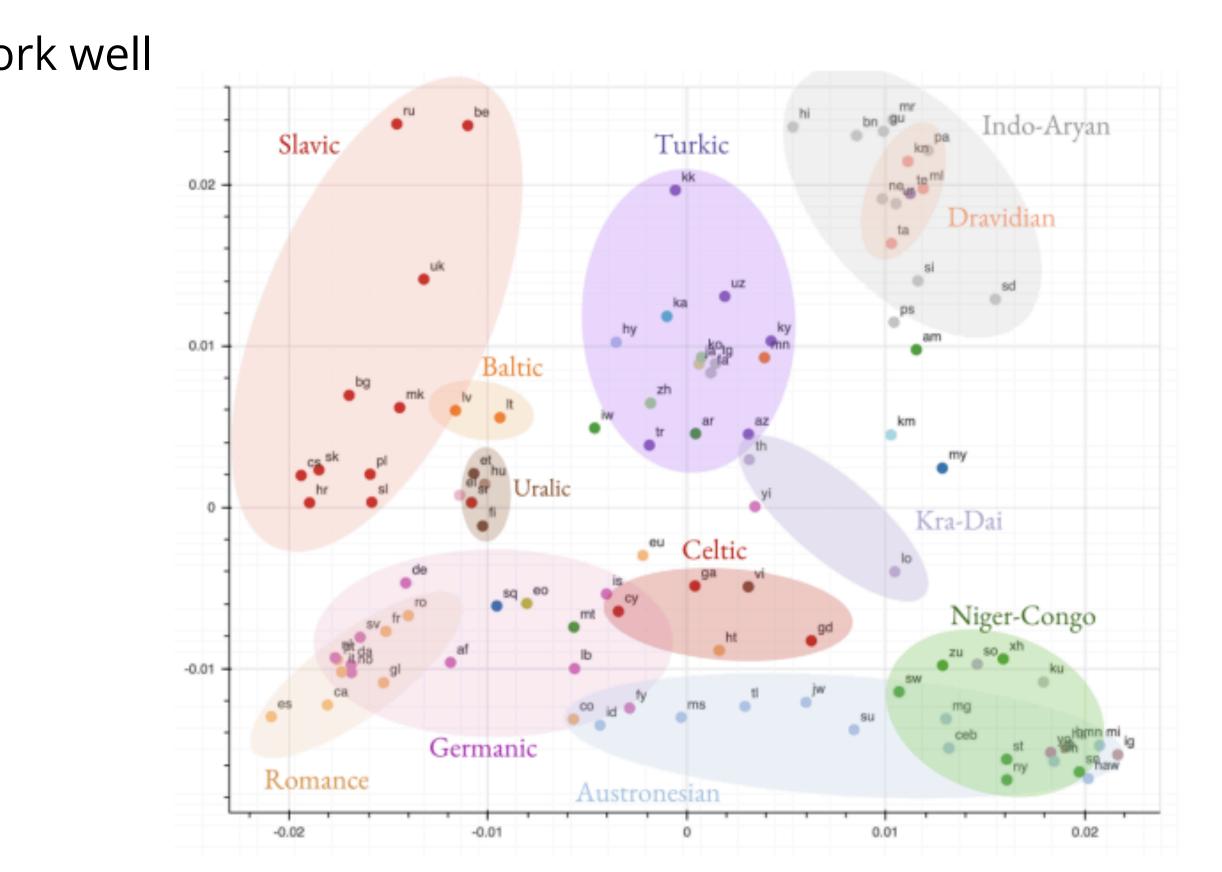


Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity. Languages are color-coded by their linguistic family. Best viewed in color.

- •NMT is a strong tool, but needs some tweaks to work well
- To handle large vocabularies:
 - •Word-based models + UNKs
 - Character level models
 - Middle-ground: subword models (BPE)
- •To use **monolingual data**:
 - Language model fusion
 - Back-translation
 - Transfer learning

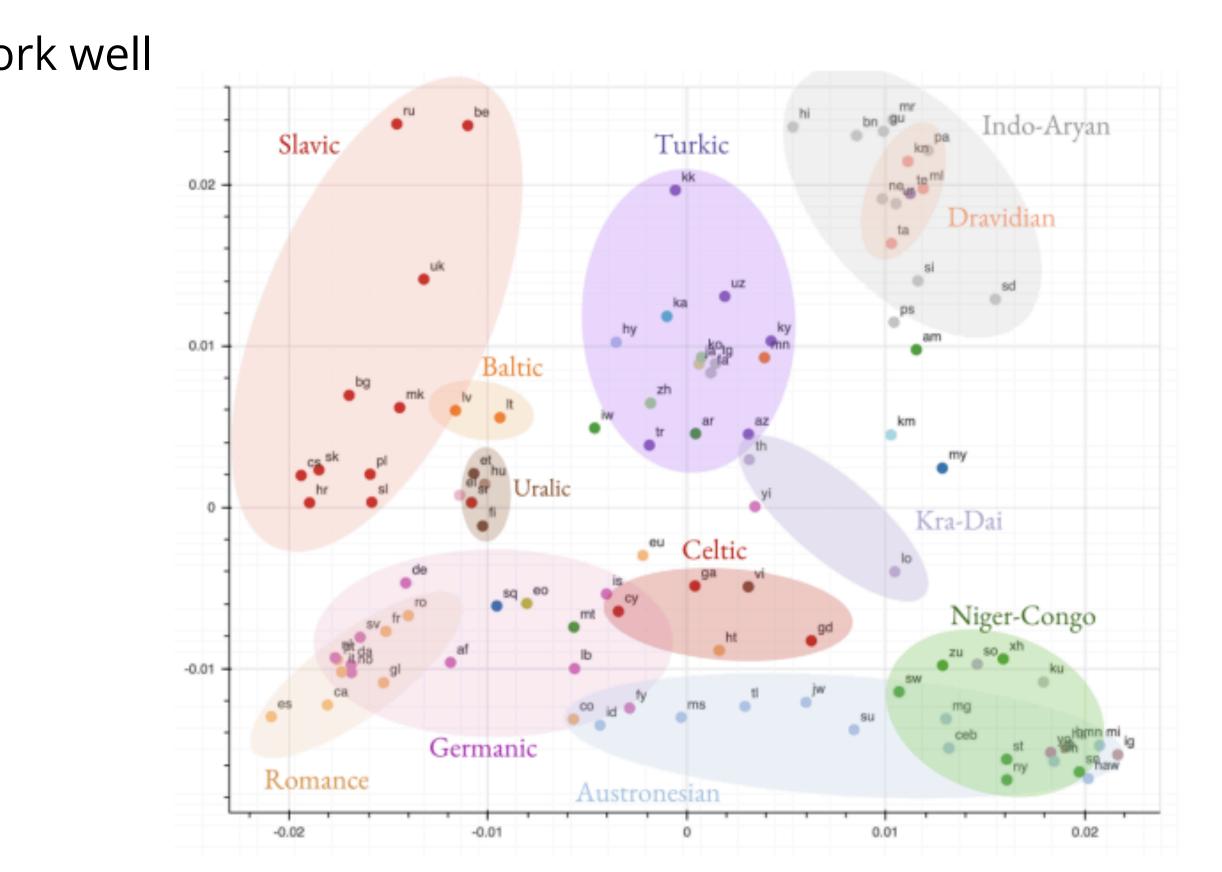


Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity. Languages are color-coded by their linguistic family. Best viewed in color.

- •NMT is a strong tool, but needs some tweaks to work well
- To handle large vocabularies:
 - •Word-based models + UNKs
 - Character level models
 - Middle-ground: subword models (BPE)
- •To use **monolingual data**:
 - Language model fusion
 - Back-translation
 - Transfer learning

• **Multilingual NMT** - more transfer, practical

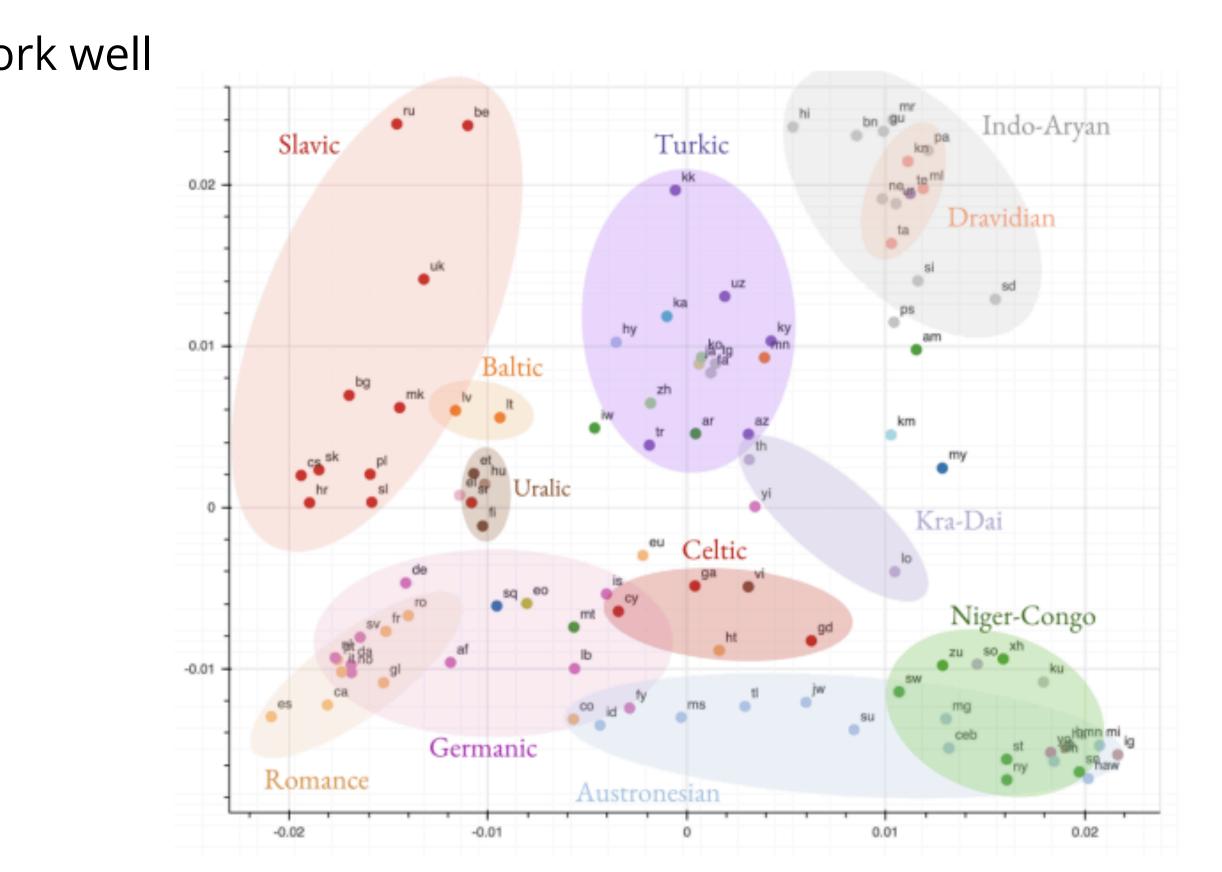


Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity. Languages are color-coded by their linguistic family. Best viewed in color.

