

89688: Statistical Machine Translation

Unsupervised Neural Machine Translation

Roee Aharoni Computer Science Department Bar Ilan University

June 2020

 NMT is better than SMT only when given >10m parallel words

BLEU Scores with Varying Amounts of Training Data

30 $20 \begin{array}{c} 26.2 \\ 24.9 \\ 23.4 \\ 23.4 \\ 21.2 \\ 22.2 \\ 23.5 \\ 21.2 \\ 22.2 \\ 23.5 \\ 21.2 \\ 22.2 \\ 23.5 \\ 21.2 \\ 22.2 \\ 24.9 \\ 23.5 \\ 21.2 \\ 22.2 \\ 24.9 \\ 23.5 \\ 21.2 \\ 22.2 \\ 24.9 \\ 23.5 \\ 21.2 \\ 22.2 \\ 24.9 \\ 23.5 \\ 24.9 \\ 21.2 \\ 22.2 \\ 24.9 \\ 23.5 \\ 24.9 \\ 21.2 \\ 22.2 \\ 24.9 \\ 23.5 \\ 24.9 \\ 21.2 \\ 22.2 \\ 24.9 \\ 23.5 \\ 24.9 \\ 21.2 \\ 22.2 \\ 24.9 \\ 23.5 \\ 24.9 \\ 21.2 \\ 22.2 \\ 24.9 \\ 23.5 \\ 24.9 \\ 21.2 \\ 22.2 \\ 24.9 \\ 23.5 \\ 24.9 \\ 21.2 \\ 22.2 \\ 24.9 \\ 21.2 \\ 22.2 \\ 24.9 \\ 21.2 \\ 22.2 \\ 24.9 \\ 21.2 \\ 22.2 \\ 24.9 \\ 24.9 \\ 21.2 \\ 24.9 \\ 24.9 \\ 21.2 \\ 24.9 \\$ 10 — Phrase-Based with Big LM Phrase-Based -----Neural -0- 10^{6} 10^{8} 10 Corpus Size (English Words)

- NMT is better than SMT only when given >10m parallel words
- NMT is better than "Semi Supervised" SMT (SMT + a large language model) only when given >100m parallel words

BLEU Scores with Varying Amounts of Training Data

- NMT is better than SMT only when given >10m parallel words
- NMT is better than "Semi Supervised" SMT (SMT + a large language model) only when given >100m parallel words
- But getting parallel data is expensive!

BLEU Scores with Varying Amounts of Training Data

- NMT is better than SMT only when given >10m parallel words
- NMT is better than "Semi Supervised" SMT (SMT + a large language model) only when given >100m parallel words
- But getting parallel data is expensive!
- Can we do well using only **monolingual data?**

BLEU Scores with Varying Amounts of Training Data

• "Exploiting Similarities among Languages for Machine Translation" - Mikolov, Le & Sutskever, 2013

- "Exploiting Similarities among Languages for Machine Translation" - Mikolov, Le & Sutskever, 2013
- Observed a similar structure in unsupervised embedding spaces of different languages, after rotation

- "Exploiting Similarities among Languages for Machine Translation" - Mikolov, Le & Sutskever, 2013
- Observed a similar structure in unsupervised embedding spaces of different languages, after rotation
- Learned a rotation matrix to translate words from one embedding space to another with some success

- "Exploiting Similarities among Languages for Machine Translation" - Mikolov, Le & Sutskever, 2013
- Observed a similar structure in unsupervised embedding spaces of different languages, after rotation
- Learned a rotation matrix to translate words from one embedding space to another with some success
- Weakly supervised requires a small dictionary (5000 entries)

• Both submitted to ICLR 2018 with critical acclaim (October 2017)

- Both submitted to ICLR 2018 with critical acclaim (October 2017)
- Similar motivations both try to tackle:

- Both submitted to ICLR 2018 with critical acclaim (October 2017)
- Similar motivations both try to tackle:
 - Structure/Fluency how to determine the correct word order in the output?

- Both submitted to ICLR 2018 with critical acclaim (October 2017)
- Similar motivations both try to tackle:
 - Structure/Fluency how to determine the correct word order in the output?
 - Semantics/Adequacy how to pick the correct translations given the source?

- Both submitted to ICLR 2018 with critical acclaim (October 2017)
- Similar motivations both try to tackle:
 - Structure/Fluency how to determine the correct word order in the output?
 - Semantics/Adequacy how to pick the correct translations given the source?
- Very similar modeling tricks (with slight differences)

- Model Architecture:
 - Shared GRU encoder, Separate GRU decoders

- Shared GRU encoder, Separate GRU decoders
- Attention

- Shared GRU encoder, Separate GRU decoders
- Attention
- Main "Tricks":

- Shared GRU encoder, Separate GRU decoders
- Attention
- Main "Tricks":
 - Fixed, unsupervised cross-lingual embeddings (Adequacy)

- Shared GRU encoder, Separate GRU decoders
- Attention
- Main "Tricks":
 - Fixed, unsupervised cross-lingual embeddings (Adequacy)
 - Backtranslation loss (**Adequacy**)

- Shared GRU encoder, Separate GRU decoders
- Attention
- Main "Tricks":
 - Fixed, unsupervised cross-lingual embeddings (Adequacy)
 - Backtranslation loss (Adequacy)
 - Denoising auto-encoder loss (Fluency)

• Artetxe, Labake & Agirre, ACL 2017

- Artetxe, Labake & Agirre, ACL 2017
- Start with monolingual embedding spaces in two languages (trained using word2vec)

From Artetxe, ACL 2017

- Artetxe, Labake & Agirre, ACL 2017
- Start with monolingual embedding spaces in two languages (trained using word2vec)
- Learn a linear mapping from one language to the other:

From Artetxe, ACL 2017

- Artetxe, Labake & Agirre, ACL 2017
- Start with monolingual embedding spaces in two languages (trained using word2vec)
- Learn a linear mapping from one language to the other:
 - Start with a **seed dictionary**. Clever idea: use numerals (5-5, 1989-1989...) as seed dictionary fully unsupervised
 - Optimize the mapping W w.r.t the dictionary: $\arg \min_{W \in O(n)} \sum_{i} ||X_{i*}W Z_{j*}||^2$

From Artetxe, ACL 2017

25

- Artetxe, Labake & Agirre, ACL 2017
- Start with monolingual embedding spaces in two languages (trained using word2vec)
- Learn a linear mapping from one language to the other:
 - Start with a **seed dictionary**. Clever idea: use numerals (5-5, 1989-1989...) as seed dictionary fully unsupervised
 - Optimize the mapping W w.r.t the dictionary: $\arg \min_{W \in O(n)} \sum_{i} ||X_{i*}W Z_{j*}||^2$
- Extract a new dictionary and **repeat iteratively** until a convergence threshold is met

From Artetxe, ACL 2017

25

- Artetxe, Labake & Agirre, ACL 2017
- Start with monolingual embedding spaces in two languages (trained using word2vec)
- Learn a linear mapping from one language to the other:
 - Start with a **seed dictionary**. Clever idea: use numerals (5-5, 1989-1989...) as seed dictionary fully unsupervised
 - Optimize the mapping W w.r.t the dictionary: $\arg \min_{W \in O(n)} \sum_{i} ||X_{i*}W Z_{j*}||^2$
- Extract a new dictionary and **repeat iteratively** until a convergence threshold is met

From Artetxe, ACL 2017

25

- Artetxe, Labake & Agirre, ACL 2017
- Start with monolingual embedding spaces in two languages (trained using word2vec)
- Learn a linear mapping from one language to the other:
 - Start with a **seed dictionary**. Clever idea: use numerals (5-5, 1989-1989...) as seed dictionary - fully unsupervised
 - Optimize the mapping W w.r.t the dictionary: $\arg \min_{W \in O(n)} \sum_{i} ||X_{i*}W Z_{j*}||^2$
- Extract a new dictionary and **repeat iteratively** until a convergence threshold is met

From Artetxe, ACL 2017

- Artetxe, Labake & Agirre, ACL 2017
- Start with monolingual embedding spaces in two languages (trained using word2vec)
- Learn a linear mapping from one language to the other:
 - Start with a **seed dictionary**. Clever idea: use numerals (5-5, 1989-1989...) as seed dictionary - fully unsupervised
 - Optimize the mapping W w.r.t the dictionary: $\arg \min_{W \in O(n)} \sum_{i} ||X_{i*}W Z_{j*}||^2$
- Extract a new dictionary and **repeat iteratively** until a convergence threshold is met

From Artetxe, ACL 2017

Learning Semantics: Back-Translation

Learning Semantics: Back-Translation

- We need to learn a mapping from one language (L1) into another (L2), but we don't have parallel data
- We need to learn a mapping from one language (L1) into another (L2), but we don't have parallel data
- Solution: create **synthetic** parallel data by translating with the current model (possible since the model is bidirectional)

- We need to learn a mapping from one language (L1) into another (L2), but we don't have parallel data
- Solution: create **synthetic** parallel data by translating with the current model (possible since the model is bidirectional)
- Use the synthetic data for training using cross entropy loss

- We need to learn a mapping from one language (L1) into another (L2), but we don't have parallel data
- Solution: create **synthetic** parallel data by translating with the current model (possible since the model is bidirectional)
- Use the synthetic data for training using cross entropy loss

L1 Sentence

- We need to learn a mapping from one language (L1) into another (L2), but we don't have parallel data
- Solution: create **synthetic** parallel data by translating with the current model (possible since the model is bidirectional)
- Use the synthetic data for training using cross entropy loss

translate using the current model

- We need to learn a mapping from one language (L1) into another (L2), but we don't have parallel data
- Solution: create **synthetic** parallel data by translating with the current model (possible since the model is bidirectional)
- Use the synthetic data for training using cross entropy loss

- We need to learn a mapping from one language (L1) into another (L2), but we don't have parallel data
- Solution: create **synthetic** parallel data by translating with the current model (possible since the model is bidirectional)
- Use the synthetic data for training using cross entropy loss
- This is not entirely useless since the cross-lingual embeddings do carry some alignment signal

• The decoder needs to learn how to organize the words on the target side

- The decoder needs to learn how to organize the words on the target side
- We could train it to predict a sentence given itself auto-encoding

- The decoder needs to learn how to organize the words on the target side
- We could train it to predict a sentence given itself auto-encoding
 - But this would lead it to learn trivial copying!

- The decoder needs to learn how to organize the words on the target side
- We could train it to predict a sentence given itself auto-encoding
 - But this would lead it to learn trivial copying!
- Introduce "noise" by randomly swapping adjacent words (N/2 times) in the input, to force the decoder to learn word ordering

- The decoder needs to learn how to organize the words on the target side
- We could train it to predict a sentence given itself auto-encoding
 - But this would lead it to learn trivial copying!
- Introduce "noise" by randomly swapping adjacent words (N/2 times) in the input, to force the decoder to learn word ordering

cat The on sat mat the

The cat sat on the mat

- The decoder needs to learn how to organize the words on the target side
- We could train it to predict a sentence given itself auto-encoding
 - But this would lead it to learn trivial copying!
- Introduce "noise" by randomly swapping adjacent words (N/2 times) in the input, to force the decoder to learn word ordering

cat The on sat mat the

The cat sat on the mat

manger J'aime croissants des

- The decoder needs to learn how to organize the words on the target side
- We could train it to predict a sentence given itself auto-encoding
 - But this would lead it to learn trivial copying!
- Introduce "noise" by randomly swapping adjacent words (N/2 times) in the input, to force the decoder to learn word ordering
- Train using conventional cross entropy loss

cat The on sat mat the

The cat sat on the mat

manger J'aime croissants des

 Training iterations alternate between denoising and back-translation

- Training iterations alternate between denoising and back-translation
- Each training iteration is composed of:

- Training iterations alternate between denoising and back-translation
- Each training iteration is composed of:
 - Denoising batch: L1 to L1

- Training iterations alternate between denoising and back-translation
- Each training iteration is composed of:
 - Denoising batch: L1 to L1
 - Denoising batch: L2 to L2

- Training iterations alternate between denoising and back-translation
- Each training iteration is composed of:
 - Denoising batch: L1 to L1
 - Denoising batch: L2 to L2
 - Back-translation batch: L1 to L2

- Training iterations alternate between denoising and back-translation
- Each training iteration is composed of:
 - Denoising batch: L1 to L1
 - Denoising batch: L2 to L2
 - Back-translation batch: L1 to L2
 - Back-translation batch: L2 to L1

- Training iterations alternate between denoising and back-translation
- Each training iteration is composed of:
 - Denoising batch: L1 to L1
 - Denoising batch: L2 to L2
 - Back-translation batch: L1 to L2
 - Back-translation batch: L2 to L1
- When do we stop? Can't use parallel validation set!

- Training iterations alternate between denoising and back-translation
- Each training iteration is composed of:
 - Denoising batch: L1 to L1
 - Denoising batch: L2 to L2
 - Back-translation batch: L1 to L2
 - Back-translation batch: L2 to L1
- When do we stop? Can't use parallel validation set!
 - Train for a fixed amount of iterations (300k)

 Denoising alone is weaker than the nearestneighbor baseline

		FR-EN	EN-FR	DE-EN	EN
Unsupervised	 Baseline (emb. nearest neighbor) Proposed (denoising) Proposed (+ backtranslation) Proposed (+ BPE) 	9.98 7.28 15.56 15.56	6.25 5.33 15.13 14.36	7.07 3.64 10.21 10.16	4 2 6 6
Semi-supervised	5. Proposed (full) + 100k parallel	21.81	21.74	15.24	10
Supervised	 Comparable NMT GNMT (Wu et al., 2016) 	20.48	19.89 38.95	15.04 -	11 24

- Denoising alone is weaker than the nearestneighbor baseline
- Denoising+Back-translation significantly improves results

		FR-EN	EN-FR	DE-EN	EN
Unsupervised	 Baseline (emb. nearest neighbor) Proposed (denoising) Proposed (+ backtranslation) Proposed (+ BPE) 	9.98 7.28 15.56 15.56	6.25 5.33 15.13 14.36	7.07 3.64 10.21 10.16	4 2 6 6
Semi-supervised	5. Proposed (full) + 100k parallel	21.81	21.74	15.24	10
Supervised	 Comparable NMT GNMT (Wu et al., 2016) 	20.48	19.89 38.95	15.04 -	11 24

- Denoising alone is weaker than the nearestneighbor baseline
- Denoising+Back-translation significantly improves results
- No clear benefit from BPE (harder to learn embeddings?)

		FR-EN	EN-FR	DE-EN	EN
Unsupervised	 Baseline (emb. nearest neighbor) Proposed (denoising) Proposed (+ backtranslation) Proposed (+ BPE) 	9.98 7.28 15.56 15.56	6.25 5.33 15.13 14.36	7.07 3.64 10.21 10.16	4 2 6 6
Semi-supervised	5. Proposed (full) + 100k parallel	21.81	21.74	15.24	10
Supervised	 Comparable NMT GNMT (Wu et al., 2016) 	20.48	19.89 38.95	15.04 -	11 24

- Denoising alone is weaker than the nearestneighbor baseline
- Denoising+Back-translation significantly improves results
- No clear benefit from BPE (harder to learn embeddings?)
- Semi supervised learning can also use this framework with notable gains
- Still a very large gap from the supervised approach (but a nice start nonetheless)

		FR-EN	EN-FR	DE-EN	EN
Unsupervised	 Baseline (emb. nearest neighbor) Proposed (denoising) Proposed (+ backtranslation) Proposed (+ BPE) 	9.98 7.28 15.56 15.56	6.25 5.33 15.13 14.36	7.07 3.64 10.21 10.16	4 2 6 6
Semi-supervised	5. Proposed (full) + 100k parallel	21.81	21.74	15.24	10
Supervised	6. Comparable NMT 7. GNMT (Wu et al., 2016)	20.48	19.89 38.95	15.04	11 24

• Model Architecture:

• Shared GRU encoder, Shared GRU decoder

- Shared GRU encoder, Shared GRU decoder
- Attention

- Shared GRU encoder, Shared GRU decoder
- Attention
- Main "Tricks":

- Shared GRU encoder, Shared GRU decoder
- Attention
- Main "Tricks":
 - Changing, adversarially trained unsupervised cross-lingual embeddings (**Adequacy**)

- Shared GRU encoder, Shared GRU decoder
- Attention
- Main "Tricks":
 - Changing, adversarially trained unsupervised cross-lingual embeddings (**Adequacy**)
 - Backtranslation loss (**Adequacy**)

- Shared GRU encoder, Shared GRU decoder
- Attention
- Main "Tricks":
 - Changing, adversarially trained unsupervised cross-lingual embeddings (Adequacy)
 - Backtranslation loss (**Adequacy**)
 - Denoising auto-encoder loss (**Fluency**)

Paper II: Lample, Denoyer and Ranzato (FAIR)

• Model Architecture:

- Shared GRU encoder, Shared GRU decoder
- Attention
- Main "Tricks":
 - Changing, adversarially trained unsupervised cross-lingual embeddings (Adequacy)
 - Backtranslation loss (**Adequacy**)
 - Denoising auto-encoder loss (**Fluency**)
 - Adversarial loss

• Introduced by Ganin et al., 2016 for domain adaption in computer vision

- Introduced by Ganin et al., 2016 for domain adaption in computer vision
- The general idea: force the model to "unlearn" a specific objective to make it learn better representation for the target objective

- Introduced by Ganin et al., 2016 for domain adaption in computer vision
- The general idea: force the model to "unlearn" a specific objective to make it learn better representation for the target objective
- Used twice here:

- Introduced by Ganin et al., 2016 for domain adaption in computer vision
- The general idea: force the model to "unlearn" a specific objective to make it learn better representation for the target objective
- Used twice here:
 - In the cross-lingual embedding learning to learn a mapping from one embedding space to the other:

Conneau et al. 2017

- Introduced by Ganin et al., 2016 for domain adaption in computer vision
- The general idea: force the model to "unlearn" a specific objective to make it learn better representation for the target objective
- Used twice here:
 - In the cross-lingual embedding learning to learn a mapping from one embedding space to the other:
 - In the NMT training to "push" the representations from the two languages to a shared "semantic" space

Conneau et al. 2017

$$p_D(l|z_1,...,z_m) \propto \prod_{j=1}^m p_D(\ell|z_j),$$

 $\mathcal{L}_{adv}(\theta_{enc}, \mathcal{Z}|\theta_D) = -\mathbb{E}_{(x_i, \ell_i)}[\log p_D(\ell_j|e(x_i, \ell_i))]$

 When do we stop training without a validation set? can we do better than fixed amount of updates?

- When do we stop training without a validation set? can we do better than fixed amount of updates?
- Measure "corruption" when translating a sentence back and forth using the model (in both directions), using BLEU

 $MS(e, d, \mathcal{D}_{src}, \mathcal{D}_{tgt}) =$

 $\frac{1}{2} \mathbb{E}_{x \sim \mathcal{D}_{src}} \left[BLEU(x, M_{src \to tgt} \circ M_{tgt \to src}(x)) \right] + \\ \frac{1}{2} \mathbb{E}_{x \sim \mathcal{D}_{tgt}} \left[BLEU(x, M_{tgt \to src} \circ M_{src \to tgt}(x)) \right]$

- When do we stop training without a validation set? can we do better than fixed amount of updates?
- Measure "corruption" when translating a sentence back and forth using the model (in both directions), using BLEU
- Correlates well with "supervised" BLEU, no need for parallel sentences

 $MS(e,d,\mathcal{D}_{src},\mathcal{D}_{tgt})$ =

 $\frac{1}{2} \mathbb{E}_{x \sim \mathcal{D}_{src}} \left[BLEU(x, M_{src \to tgt} \circ M_{tgt \to src}(x)) \right] + \frac{1}{2} \mathbb{E}_{x \sim \mathcal{D}_{tgt}} \left[BLEU(x, M_{tgt \to src} \circ M_{src \to tgt}(x)) \right]$

 Model significantly outperforms word-byword baselines, showing the importance of the back-translation + denoising + adversarial approach

	Multi30k-Task1					WMT	
	en-fr	fr-en	de-en	en-de	en-fr	fr-en	de-en
Supervised	56.83	50.77	38.38	35.16	27.97	26.13	25.61
word-by-word word reordering oracle word reordering	8.54 - 11.62	16.77 - 24.88	15.72 - 18.27	5.39 - 6.79	6.28 6.68 10.12	10.09 11.69 20.64	10.77 10.84 19.42
Our model: 1st iteration Our model: 2nd iteration Our model: 3rd iteration	27.48 31.72 32.76	28.07 30.49 32.07	23.69 24.73 26.26	19.32 21.16 22.74	12.10 14.42 15.05	11.79 13.49 14.31	11.10 13.25 13.33

- Model significantly outperforms word-byword baselines, showing the importance of the back-translation + denoising + adversarial approach
- Supervised models are still significantly better

	Multi30k-Task1					WMT	
	en-fr	fr-en	de-en	en-de	en-fr	fr-en	de-en
Supervised	56.83	50.77	38.38	35.16	27.97	26.13	25.61
word-by-word word reordering oracle word reordering	8.54 - 11.62	16.77 - 24.88	15.72 - 18.27	5.39 - 6.79	6.28 6.68 10.12	10.09 11.69 20.64	10.77 10.84 19.42
Our model: 1st iteration Our model: 2nd iteration Our model: 3rd iteration	27.48 31.72 32.76	28.07 30.49 32.07	23.69 24.73 26.26	19.32 21.16 22.74	12.10 14.42 15.05	11.79 13.49 14.31	11.10 13.25 13.33

- Model significantly outperforms word-byword baselines, showing the importance of the back-translation + denoising + adversarial approach
- Supervised models are still significantly better
- Unsupervised models performance is equivalent to a supervised model with ~100k parallel sentences

	Multi30k-Task1					WMT	
	en-fr	fr-en	de-en	en-de	en-fr	fr-en	de-en
Supervised	56.83	50.77	38.38	35.16	27.97	26.13	25.61
word-by-word word reordering oracle word reordering	8.54 - 11.62	16.77 - 24.88	15.72 - 18.27	5.39 - 6.79	6.28 6.68 10.12	10.09 11.69 20.64	10.77 10.84 19.42
Our model: 1st iteration Our model: 2nd iteration Our model: 3rd iteration	27.48 31.72 32.76	28.07 30.49 32.07	23.69 24.73 26.26	19.32 21.16 22.74	12.10 14.42 15.05	11.79 13.49 14.31	11.10 13.25 13.33

Back-translation, pre-trained word vectors and de-noising are crucial

- Back-translation, pre-trained word vectors and de-noising are crucial
- Adversarial loss gives a nice boost of ~3-6 points

- Back-translation, pre-trained word vectors and de-noising are crucial
- Adversarial loss gives a nice boost of ~3-6 points
- Best model obtained using all components together

- Back-translation, pre-trained word vectors and de-noising are crucial
- Adversarial loss gives a nice boost o ~3-6 points
- Best model obtained using all components together

	en-fr	fr-en	de-en	en
$\lambda_{cd} = 0$	25.44	27.14	20.56	14
Without pretraining	25.29	26.10	21.44	17
Without pretraining, $\lambda_{cd} = 0$	8.78	9.15	7.52	6
Without noise, $C(x) = x$	16.76	16.85	16.85	14
$\lambda_{auto} = 0$	24.32	20.02	19.10	14
$\lambda_{adv} = 0$	24.12	22.74	19.87	15
Full	27.48	28.07	23.69	19

•Both models:

•Both models:

•Heavily rely on bilingual word embeddings

•Both models:

- •Heavily rely on bilingual word embeddings
- •Heavily rely on de-noising and back-translation using a shared encoder

•Both models:

•Heavily rely on bilingual word embeddings

•Heavily rely on de-noising and back-translation using a shared encoder

•Both models:

- •Heavily rely on bilingual word embeddings
- •Heavily rely on de-noising and back-translation using a shared encoder

•Notable Differences:

•Perform back-translation once per epoch (Lample et al.) vs. after every update (Artetxe et al.)

•Both models:

- •Heavily rely on bilingual word embeddings
- •Heavily rely on de-noising and back-translation using a shared encoder

- •Perform back-translation once per epoch (Lample et al.) vs. after every update (Artetxe et al.)
- •BPE and word-based modeling (Artetxe et al.) vs. word based alone (Lample et al.)

•Both models:

- •Heavily rely on bilingual word embeddings
- •Heavily rely on de-noising and back-translation using a shared encoder

- •Perform back-translation once per epoch (Lample et al.) vs. after every update (Artetxe et al.)
- •BPE and word-based modeling (Artetxe et al.) vs. word based alone (Lample et al.)
- Fixed embeddings (Artetxe et al.) vs. changing (Lample et al.)

•Both models:

- •Heavily rely on bilingual word embeddings
- •Heavily rely on de-noising and back-translation using a shared encoder

- •Perform back-translation once per epoch (Lample et al.) vs. after every update (Artetxe et al.)
- •BPE and word-based modeling (Artetxe et al.) vs. word based alone (Lample et al.)
- Fixed embeddings (Artetxe et al.) vs. changing (Lample et al.)
- Different decoder per language (Artetxe et al.) vs. shared encoder (Lample et al.)

•Both models:

- •Heavily rely on bilingual word embeddings
- •Heavily rely on de-noising and back-translation using a shared encoder

- •Perform back-translation once per epoch (Lample et al.) vs. after every update (Artetxe et al.)
- •BPE and word-based modeling (Artetxe et al.) vs. word based alone (Lample et al.)
- Fixed embeddings (Artetxe et al.) vs. changing (Lample et al.)
- Different decoder per language (Artetxe et al.) vs. shared encoder (Lample et al.)
- •Adversarial training (Lample et al.)

•Both models:

- •Heavily rely on bilingual word embeddings
- •Heavily rely on de-noising and back-translation using a shared encoder

•Notable Differences:

- •Perform back-translation once per epoch (Lample et al.) vs. after every update (Artetxe et al.)
- •BPE and word-based modeling (Artetxe et al.) vs. word based alone (Lample et al.)
- Fixed embeddings (Artetxe et al.) vs. changing (Lample et al.)
- Different decoder per language (Artetxe et al.) vs. shared encoder (Lample et al.)
- •Adversarial training (Lample et al.)

•Slightly different noise method (Lample et al.) - swapping and dropping words, also adding noise before back-translation

•Both models:

- •Heavily rely on bilingual word embeddings
- •Heavily rely on de-noising and back-translation using a shared encoder

•Notable Differences:

- •Perform back-translation once per epoch (Lample et al.) vs. after every update (Artetxe et al.)
- •BPE and word-based modeling (Artetxe et al.) vs. word based alone (Lample et al.)
- Fixed embeddings (Artetxe et al.) vs. changing (Lample et al.)
- Different decoder per language (Artetxe et al.) vs. shared encoder (Lample et al.)
- •Adversarial training (Lample et al.)
- •Use unsupervised model selection criterion (Lample et al.) vs. fixed amount of updates

•Slightly different noise method (Lample et al.) - swapping and dropping words, also adding noise before back-translation

•Both models:

- •Heavily rely on bilingual word embeddings
- •Heavily rely on de-noising and back-translation using a shared encoder

•Notable Differences:

- •Perform back-translation once per epoch (Lample et al.) vs. after every update (Artetxe et al.)
- •BPE and word-based modeling (Artetxe et al.) vs. word based alone (Lample et al.)
- Fixed embeddings (Artetxe et al.) vs. changing (Lample et al.)
- Different decoder per language (Artetxe et al.) vs. shared encoder (Lample et al.)
- •Adversarial training (Lample et al.)
- •Use unsupervised model selection criterion (Lample et al.) vs. fixed amount of updates
- •Initialize back-translation using nearest-neighbor word-by-word translation (Lample et al.)

•Slightly different noise method (Lample et al.) - swapping and dropping words, also adding noise before back-translation

Phrase-Based Unsupervised NMT

Phrase-Based Unsupervised NMT

 A second wave of works integrated phrasebased models for unsupervised NMT (also from the same authors):

Phrase-Based Unsupervised NMT

- A second wave of works integrated phrasebased models for unsupervised NMT (also from the same authors):
 - Lample et al. (2018)

Phrase-Based & Neural Unsupervised Machine Translation

Guillaume Lample[†] Facebook AI Research Sorbonne Universités glample@fb.com Myle Ott Facebook AI Research myleott@fb.com

Alexis Conneau Facebook AI Research Université Le Mans aconneau@fb.com

Ludovic Denoyer[†] Sorbonne Universités ludovic.denoyer@lip6.fr Marc'Aurelio Ranzato Facebook AI Research ranzato@fb.com
Phrase-Based Unsupervised NMT

- A second wave of works integrated phrasebased models for unsupervised NMT (also from the same authors):
 - Lample et al. (2018)
 - Artetxe et al. (2018)

Phrase-Based & Neural Unsupervised Machine Translation

Guillaume Lample[†] Facebook AI Research Sorbonne Universités glample@fb.com Myle Ott Facebook AI Research myleott@fb.com

Alexis Conneau Facebook AI Research Université Le Mans aconneau@fb.com

Ludovic Denoyer[†] Sorbonne Universités ludovic.denoyer@lip6.fr Marc'Aurelio Ranzato Facebook AI Research ranzato@fb.com

Unsupervised Statistical Machine Translation

Phrase-Based Unsupervised NMT

- A second wave of works integrated phrasebased models for unsupervised NMT (also from the same authors):
 - Lample et al. (2018)
 - Artetxe et al. (2018)
 - Artetxe et al (2019)

Phrase-Based & Neural Unsupervised Machine Translation

Guillaume Lample[†] Facebook AI Research Sorbonne Universités glample@fb.com Myle Ott Facebook AI Research myleott@fb.com

Alexis Conneau Facebook AI Research Université Le Mans aconneau@fb.com

Ludovic Denoyer[†] Sorbonne Universités ludovic.denoyer@lip6.fr Marc'Aurelio Ranzato Facebook AI Research ranzato@fb.com

Unsupervised Statistical Machine Translation

Mikel Artetxe, Gorka Labaka, Eneko Agirre IXA NLP Group University of the Basque Country (UPV/EHU) {mikel.artetxe,gorka.labaka,e.agirre}@ehu.eus

An Effective Approach to Unsupervised Machine Translation

Phrase-Based Unsupervised NMT

- A second wave of works integrated phrasebased models for unsupervised NMT (also from the same authors):
 - Lample et al. (2018)
 - Artetxe et al. (2018)
 - Artetxe et al (2019)
- Makes sense, as SMT was shown to work better in low resource scenarios

Phrase-Based & Neural Unsupervised Machine Translation

Guillaume Lample[†] Facebook AI Research Sorbonne Universités glample@fb.com Myle Ott Facebook AI Research myleott@fb.com

Alexis Conneau Facebook AI Research Université Le Mans aconneau@fb.com

Ludovic Denoyer[†] Sorbonne Universités ludovic.denoyer@lip6.fr Marc'Aurelio Ranzato Facebook AI Research ranzato@fb.com

Unsupervised Statistical Machine Translation

Mikel Artetxe, Gorka Labaka, Eneko Agirre IXA NLP Group University of the Basque Country (UPV/EHU) {mikel.artetxe,gorka.labaka,e.agirre}@ehu.eus

An Effective Approach to Unsupervised Machine Translation

• Artetxe, Labaka and Agirre, 2018

Unsupervised Statistical Machine Translation

- Artetxe, Labaka and Agirre, 2018
- Main idea: use SMT instead of NMT

Unsupervised Statistical Machine Translation

- Artetxe, Labaka and Agirre, 2018
- Main idea: use SMT instead of NMT
- Train n-gram embeddings using a variation of skip-gram

Unsupervised Statistical Machine Translation

- Artetxe, Labaka and Agirre, 2018
- Main idea: use SMT instead of NMT
- Train n-gram embeddings using a variation of skip-gram
- Learn a mapping between the embedding spaces

Unsupervised Statistical Machine Translation

- Artetxe, Labaka and Agirre, 2018
- Main idea: use SMT instead of NMT
- Train n-gram embeddings using a variation of skip-gram
- Learn a mapping between the embedding spaces
- Create a phrase table by computing translation probabilities using softmax over the cosinesimilarities to the 100 nearest neighbours

Unsupervised Statistical Machine Translation

- Artetxe, Labaka and Agirre, 2018
- Main idea: use SMT instead of NMT
- Train n-gram embeddings using a variation of skip-gram
- Learn a mapping between the embedding spaces
- Create a phrase table by computing translation probabilities using softmax over the cosinesimilarities to the 100 nearest neighbours
- Tune the resulting system using iterative backtranslation

Unsupervised Statistical Machine Translation

 Much better than previous unsupervised NMT approaches across 6 language pairs

		WMT-16				
	FR-EN	EN-FR	DE-EN	EN-DE	DE-EN	EN
Artetxe et al. (2018c)	15.56	15.13	10.21	6.55	-	
Lample et al. (2018)	14.31	15.05	-	-	13.33	9.
Yang et al. (2018)	15.58	16.97	-	-	14.62	10
Proposed system	25.87	26.22	17.43	14.08	23.05	18

- Much better than previous unsupervised NMT approaches across 6 language pairs
- Unsupervised Tuning and Iterative Back-Translation are important

	WMT-14							WMT-16		
-	FR	-EN 1	EN-FR	DE	E-EN	EN-DE		DE-EN	EN	
Artetxe et al. (2018c)	15	.56	15.13	10	0.21	6.55		-		
Lample et al. (2018)	14	.31	15.05		-	-		13.33	9.	
Yang et al. (2018)	15	.58	16.97		-	-		14.62	10.	
Proposed system	25	.87	26.22	17	7.43	14.08		23.05	18	
	WMT-14							WMT-16		
	_	FR-EN	EN-F	R I	DE-EN	EN-DE	2	DE-EN	EN	
Unsupervised SMT		21.16	20.13	3	13.86	10.59		18.01	13	
+ unsupervised tuning		22.17	22.22	2	14.73	10.64		18.21	13	
+ iterative refinement (it1)		24.81	26.53	3	16.01	13.45		20.76	16	
+ iterative refinement (it2)		26.13	26.57	7	17.30	13.95		22.80	18	
+ iterative refinement (it3)		25.87	26.22	2	17.43	14.08		23.05	18	

- Much better than previous unsupervised NMT approaches across 6 language pairs
- Unsupervised Tuning and Iterative Back-Translation are important
- Still far from the supervised approaches

		WMT-14						WMT-16		
	-	FR-EN	EN	-FR	DE-	EN	EN-	DE	DE-EN	EN
Artetxe et a	l. (2018c)	15.56	15	5.13	10.2	21	6.5	55	-	-
Lample et a	1. (2018)	14.31	15	5.05	-		-		13.33	9.0
Yang et al.	(2018)	15.58	16	5.97	-	-			14.62	10.
Proposed sy	vstem	25.87	20	5.22	17.4	43	14.	08	23.05	18
				N	/MT-1	4			WM	T-16
		FR-	EN	EN-F	R D	E-EN	EN	N-DE	DE-EN	EN·
Unsupervise	ed SMT	21.	16	20.13	3 1	3.86	1	0.59	18.01	13
+ unsupervised tuning 22		22.	.17 22.		2 1	14.73		0.64	18.21	13.
+ iterative refinement (it1) 2		1) 24.	81	26.53	3 1	16.01		3.45	20.76	16.
+ iterative r	efinement (it	2) 26 .	13	26.57	/ 1	7.30	1.	3.95	22.80	18
+ iterative r	efinement (it	3) 25.	.87	26.22	2 1	7.43	14	4.08	23.05	18
			WMT-14					WI	MT-1	
			FR-I	EN E	N-FR	DE-	EN	EN-DE	DE-EN	EN
	NMT (transf	former)	-		41.8	-		28.4	-	
Supervised	WMT best		35.	0	35.8	29.	.0	20.6	40.2	3
	SMT (europ	arl)	30.6	51 3	30.82	20.	83	16.60	26.38	22
	+ w/o lexica	al reord. 30		54 3	30.33	20.	37	16.34	25.99	22
	+ constraine	d vocab.	30.0)4 3	30.10	19.	9.91 16.32		25.66	2
	+ unsup. tur	ing	29.3	32 2	29.46 17.		75	15.45	23.35	19
Unsup.	Proposed sy	stem	25.8	25.87 26		17.43		14.08	23.05	18

 First proposed by Lample et al. (2018) proposed similar ideas with SMT, and a joint approach by training NMT on SMT outputs

Phrase-Based & Neural Unsupervised Machine Translation

Guillaume Lample[†] Facebook AI Research Sorbonne Universités glample@fb.com Myle Ott Facebook AI Research myleott@fb.com

Alexis Conneau Facebook AI Research Université Le Mans aconneau@fb.com

Ludovic Denoyer[†] Sorbonne Universités ludovic.denoyer@lip6.fr Marc'Aurelio Ranzato Facebook AI Research ranzato@fb.com

- First proposed by Lample et al. (2018) proposed similar ideas with SMT, and a joint approach by training NMT on SMT outputs
- Improved by Artetxe et al (2019) with better tuning of the SMT model and a gradual mixing of SMT and NMT backtranslations

Phrase-Based & Neural Unsupervised Machine Translation

Guillaume Lample[†] Facebook AI Research Sorbonne Universités glample@fb.com Myle Ott Facebook AI Research myleott@fb.com

Alexis Conneau Facebook AI Research Université Le Mans aconneau@fb.com

Ludovic Denoyer[†] Sorbonne Universités ludovic.denoyer@lip6.fr

Marc'Aurelio Ranzato Facebook AI Research ranzato@fb.com

An Effective Approach to Unsupervised Machine Translation

- First proposed by Lample et al. (2018) proposed similar ideas with SMT, and a joint approach by training NMT on SMT outputs
- Improved by Artetxe et al (2019) with better tuning of the SMT model and a gradual mixing of SMT and NMT backtranslations
- Pure SMT systems perform better than pure NMT systems, yet the best results are obtained by initializing an NMT system with an SMT system

Phrase-Based & Neural Unsupervised Machine Translation

Guillaume Lample[†] Facebook AI Research Sorbonne Universités glample@fb.com Myle Ott Facebook AI Research myleott@fb.com

Alexis Conneau Facebook AI Research Université Le Mans aconneau@fb.com

Ludovic Denoyer[†] Sorbonne Universités ludovic.denoyer@lip6.fr Marc'Aurelio Ranzato Facebook AI Research ranzato@fb.com

An Effective Approach to Unsupervised Machine Translation

• Two recent works (2020) analyzed what are the conditions required to make unsupervised NMT useful

• Two recent works (2020) analyzed what are the conditions required to make unsupervised NMT useful

When Does Unsupervised Machine Translation Work?

Kelly Marchisio and Kevin Duh and Philipp Koehn Johns Hopkins University

kmarc@jhu.edu, kevinduh@cs.jhu.edu, phi@jhu.edu

• Two recent works (2020) analyzed what are the conditions required to make unsupervised NMT useful

When Does Unsupervised Machine Translation Work?

Kelly Marchisio and Kevin Duh and Philipp Koehn Johns Hopkins University

kmarc@jhu.edu, kevinduh@cs.jhu.edu, phi@jhu.edu

When and Why is Unsupervised Neural Machine Translation Useless?

Miguel Graça[†] Hermann Ney Yunsu Kim

Human Language Technology and Pattern Recognition Group RWTH Aachen University, Aachen, Germany {surname}@cs.rwth-aachen.de

- Two recent works (2020) analyzed what are the conditions required to make unsupervised NMT useful
- Both found that:

When Does Unsupervised Machine Translation Work?

Kelly Marchisio and Kevin Duh and Philipp Koehn Johns Hopkins University

kmarc@jhu.edu, kevinduh@cs.jhu.edu, phi@jhu.edu

When and Why is Unsupervised Neural Machine Translation Useless?

Miguel Graça[†] Hermann Ney Yunsu Kim

Human Language Technology and Pattern Recognition Group RWTH Aachen University, Aachen, Germany {surname}@cs.rwth-aachen.de

- Two recent works (2020) analyzed what are the conditions required to make unsupervised NMT useful
- Both found that:
 - A critical condition is having the data drawn from a **similar domain**

When Does Unsupervised Machine Translation Work?

Kelly Marchisio and Kevin Duh and Philipp Koehn Johns Hopkins University

kmarc@jhu.edu, kevinduh@cs.jhu.edu, phi@jhu.edu

When and Why is Unsupervised Neural Machine Translation Useless?

Miguel Graça[†] Hermann Ney Yunsu Kim

Human Language Technology and Pattern Recognition Group RWTH Aachen University, Aachen, Germany {surname}@cs.rwth-aachen.de

Domain	Domain	BLEU [%]						
(en)	(de/ru)	de-en	en-de	ru-en	en-ru			
Newswire	Newswire	23.3	19.9	11.9	9.3			
	Politics	11.5	12.2	2.3	2.5			
	Random	18.4	16.4	6.9	6.1			

- Two recent works (2020) analyzed what are the conditions required to make unsupervised NMT useful
- Both found that:
 - A critical condition is having the data drawn from a **similar domain**
 - The **pretraining quality** has a strong effect on the final model

Domain	Domain	BLEU [%]						
(en)	(de/ru)	de-en	en-de	ru-en	en-ru			
	Newswire	23.3	19.9	11.9	9.3			
Newswire	Politics	11.5	12.2	2.3	2.5			
	Random	18.4	16.4	6.9	6.1			

• Unsupervised NMT is possible!

- Unsupervised NMT is possible!
 - Cross-lingual embeddings

- Unsupervised NMT is possible!
 - Cross-lingual embeddings
 - Iterative Back-Translation

- Unsupervised NMT is possible!
 - Cross-lingual embeddings
 - Iterative Back-Translation
- SOTA "Hybrid": SMT bootstrapping, then NMT

Target Source Corpus Corpus Trg Emb Src Emb Space Space Cross-Lingual Emb Space Phrase Phrase Table Table G Tuning with Tuning with SMT System SMT System unsup. MERT unsup. MERT Iterative Iterative backtranslation G > backtranslation SMT System SMT System and tuning with and tuning with MERT MERT -----NMT System NMT System

- Unsupervised NMT is possible!
 - Cross-lingual embeddings
 - Iterative Back-Translation
- SOTA "Hybrid": SMT bootstrapping, then NMT
- When does it work domains, pretraining matters!

