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NMT is better than SMT only when given >10m parallel
words

NMT is better than “Semi Supervised” SMT (SMT + a
large language model) only when given >100m parallel
words

But getting parallel data is expensive!

Can we do well using only monolingual data?
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Motivation: Mikolov et al. 2013

“Exploiting Similarities among Languages for
Machine Translation” - Mikolov, Le & Sutskever, 2013

Observed a similar structure in unsupervised
embedding spaces of different languages, after
rotation

Learned a rotation matrix to translate words from

005F

one embedding space to another with some success

Weakly supervised - requires a small dictionary
(5000 entries)
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Unsupervised NMT: A Tale of Two Papers

e Both submitted to ICLR 2018 with critical acclaim (October 2017)
e Similar motivations - both try to tackle:

e Structure/Fluency - how to determine the correct word order in the
output?

e Semantics/Adequacy - how to pick the correct translations given the
source?

e Very similar modeling tricks (with slight differences)
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e Denoising auto-encoder loss (Fluency)
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Learning Semantics: Back-Translation

We need to learn a mapping from one language (L1) _ .
: , Train the model to predict
into another (L2), but we don’t have parallel data this transition

—_
/

Solution: create synthetic parallel data by translating
with the current model (possible since the model is

bidirectional) L 1 Synthetic
Sentence Senl’;znce

Use the synthetic data for training using cross \

entropy loss

This is not entirely useless since the cross-lingual translate

: : : using the
embeddings do carry some alignment signal current model
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Learning Structure: De-noising Auto-Encoders

The decoder needs to learn how to organize the
words on the target side cat The on sat mat the

We could train it to predict a sentence given itself - l
auto-encoding The cat sat on the mat

e But this would lead it to learn trivial copying!

Introduce “noise” by randomly swapping adjacent
words (N/2 times) in the input, to force the decoder
to learn word ordering l

manger J'aime croissants des

J'aime manger des croissants
Train using conventional cross entropy loss
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Putting It All Together: Iterative Training

* Training iterations alternate between denoising and
back-translation

e Each training iteration is composed of:
e Denoising batch: L1 to L1
e Denoising batch: L2 to L2
e Back-translation batch: L1 to L2
e Back-translation batch: L2 to L1
e When do we stop? Can't use parallel validation set!

* Train for a fixed amount of iterations (300Kk)

Shared encoder (L1/L2)

L1 decoder

________________________

attention

attention

________________________
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Results

* Denoising alone is weaker than the nearest-
neighbor baseline

* Denoising+Back-translation significantly
improves results

* No clear benefit from BPE (harder to learn
embeddings?)

e Semi supervised learning can also use this
framework with notable gains

e Still a very large gap from the supervised
approach (but a nice start nonetheless)
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Adversarial Training

(A)

e Introduced by Ganin et al., 2016 for domain adaption
In computer vision

e The general idea: force the model to “unlearn” a
specific objective to make it learn better
representation for the target objective

e Used twice here:

e |n the cross-lingual embedding learning - to learn a

Conneau et al. 2017

™m
mapping from one embedding space to the other: DD (”31, e Zm) X H DD (glzj),
1
e |[n the NMT training - to “push” the representations ’
from the two languages to a shared “semantic” Lo dv (genc, ZIHD) — 43(%,&) [k)g DD (gj |6(£Bq;, gz))]

space
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Unsupervised Model Selection Criterion

* When do we stop training without a
validation set? can we do better than
fixed amount of updates?

e Measure “corruption” when translating
a sentence back and forth using the
model (in both directions), using BLEU

o Correlates well with “supervised” BLEU,
no need for parallel sentences

[\DIF—*l\DIP—*

4:1:~’D

MS(G, d,DsrcaDtgt) —

[BLEU(:E Msrc—)tqt O Mtqt—)src( ))] +

44:1:N’Dt_qt [BLEU(:E, Mtgt—>src O Msrc—nfgt (:U))]

— Source -> Target BLEU
-+« Target -> Source BLEU
- =+ Unsupervised Criterion

0 S 10 15 20 25 30
number of epochs
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e Model significantly outperforms word-by-

word baselines, showing the importance of
the back-translation + denoising +

adversarial approach

Multi30k-Task1 WMT

en-fr frren de-en en-de en-fr frren de-en en-de
Supervised 56.83 50.77 3838 35.16 | 27.97 26.13 25.61 21.33
word-by-word 854 16.77 15.72 5.39 6.28 10.09 10.77 7.06
word reordering - - - - 6.68 11.69 10.84 6.70
oracle word reordering 11.62 24.88 18.27 6.79 | 10.12 2064 1942 11.57
Our model: 1stiteration 2748 28.07 23.69 19.32 | 12.10 11.79 11.10 8.86
Our model: 2nd iteration 31.72 3049 2473 21.16 | 1442 1349 13.25 9.75
Our model: 3rd iteration 32.76 32.07 2626 22.74 | 15.05 1431 13.33 0.64
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Results

Multi30k-Task1 WMT
* Model significantly outperforms word-by- enfr fren deen ende] endr fren deen ende
d b lin A ino the im rtan £ Supervised 56.83 50.77 3838 35.16 | 27.97 26.13 25.61 21.33
WO aselines, sShowing € Importance o word-by-word 854 16.77 1572 539 | 628 10.09 10.77 7.06

the back-translation + denoising + word reordering 6.68 11.69 10.84 6.70

. oracle word reordering 11.62- 24.8é 18.27- 6.79- 10.12 2064 1942 11.57
adversarial approach

Our model: 1stiteration  27.48 28.07 23.69 19.32 | 12.10 11.79 11.10 8.86
Our model: 2nd iteration 31.72 3049 2473 21.16 | 1442 1349 13.25 9.75
Our model: 3rd iteration  32.76 32.07 26.26 22.74 | 15.05 1431 13.33 9.64

o Supervised models are still significantly

better
301
o Unsupervised models performance is 25
equivalent to a supervised model with ~100k 220
parallel sentences C1s)
10+
51

0 1 2 3 104 10 10 107
number of iterations number of parallel training sentences
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Ablation Study

e Back-translation, pre-trained word en-fr fr-en de-en en-de
vectors and de-noising are crucial Aoy =0 2544 27.14 20.56 14.42
Without pretraining 25.29 26.10 2144 17.23

o Adversarial loss gives a nice boost o Without pretraining, Aca =0 8.78  9.15  7.52  6.24
~3-6 point Without noise, C(x) = x 16.76 16.85 16.85 14.61

-0 PoIints Aauto = 0 2432 2002 19.10 14.74
Aadv =0 24.12 2274 19.87 15.13

 Best model obtained using all Full 27.48 28.07 23.69 19.32

components together
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Comparison

eBoth models:
eHeavily rely on bilingual word embeddings
eHeavily rely on de-noising and back-translation using a shared encoder
eNotable Differences:
ePerform back-translation once per epoch (Lample et al.) vs. after every update (Artetxe et al.)
BPE and word-based modeling (Artetxe et al.) vs. word based alone (Lample et al.)
eFixed embeddings (Artetxe et al.) vs. changing (Lample et al.)

eDifferent decoder per language (Artetxe et al.) vs. shared encoder (Lample et al.)

e Adversarial training (Lample et al.)
oSlightly different noise method (Lample et al.) - swapping and dropping words, also adding noise before back-translation
eUse unsupervised model selection criterion (Lample et al.) vs. fixed amount of updates

e|nitialize back-translation using nearest-neighbor word-by-word translation (Lample et al.)
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e A second wave of works integrated phrase-
based models for unsupervised NMT (also
from the same authors):

e Lample et al. (2018)
e Artetxe et al. (2018)
e Artetxe et al (2019)

e Makes sense, as SMT was shown to work
better in low resource scenarios

Phrase-Based & Neural Unsupervised Machine Translation

Alexis Conneau

Facebook Al Research
Université Le Mans
aconneau@fb.com

Guillaume Lample’ Myle Ott
Facebook AI Research Facebook Al Research
Sorbonne Universités myleott@fb.com

glample@fb.com

Marc’Aurelio Ranzato
Facebook Al Research
ranzato@fb.com

Ludovic Denoyer!
Sorbonne Universités
ludovic.denoyer@lip6.fr

Unsupervised Statistical Machine Translation

Mikel Artetxe, Gorka Labaka, Eneko Agirre
IXA NLP Group
University of the Basque Country (UPV/EHU)
{mikel.artetxe,gorka.labaka,e.agirre}@ehu.eus

An Effective Approach to Unsupervised Machine Translation

Mikel Artetxe, Gorka Labaka, Eneko Agirre
IXA NLP Group
University of the Basque Country (UPV/EHU)
{mikel.artetxe, gorka.labaka, e.agirre}fehu.eus




Unsupervised Statistical Machine Translation



Unsupervised Statistical Machine Translation

o Artetxe, Labaka and Agirre, 2018

Unsupervised Statistical Machine Translation

Mikel Artetxe, Gorka Labaka, Eneko Agirre
IXA NLP Group
University of the Basque Country (UPV/EHU)
{mikel.artetxe,gorka.labaka,e.agirre}@ehu.eus



Unsupervised Statistical Machine Translation

o Artetxe, Labaka and Agirre, 2018

e Main idea: use SMT instead of NMT

Unsupervised Statistical Machine Translation

Mikel Artetxe, Gorka Labaka, Eneko Agirre
IXA NLP Group
University of the Basque Country (UPV/EHU)

{mikel.artetxe,gorka.labaka,e.agirre}@ehu.eus

o L1 n-gram
— embeddings
Corpus L1 —*  (Section 3.1)
N —
L2 n-gram
Corpus L2
¥p—’/ e embeddings

Cross-lingual

mapping
(Section 3.2)

Phrase based SMT
Phrase table | Word & p.hrase
(Section 4.1) penalties
Language Distortion
model model
‘/_—-Z'

Unsupervised
tuning
(Section 4.2)

Iterative
refinement
(Section 5)



Unsupervised Statistical Machine Translation

o Artetxe, Labaka and Agirre, 2018
e Main idea: use SMT instead of NMT

e Train n-gram embeddings using a variation of
skip-gram

Unsupervised Statistical Machine Translation

Mikel Artetxe, Gorka Labaka, Eneko Agirre
IXA NLP Group
University of the Basque Country (UPV/EHU)

{mikel.artetxe,gorka.labaka,e.agirre}@ehu.eus

o 11 gram Phrase based SMT
~ embeddings
—*  (Section 3.1) - ©

corpus L Cross-llr?gual Phrase table | Word & phrase

N — mapping ion 4.1 penalties
i (Section 3.2) pection 4.1}

Corpus L2 . : :

¥p_’/\ embeddings Language Distortion
\(Section 3.1) model model

Unsupervised
tuning
(Section 4.2)

Iterative
refinement
(Section 5)



Unsupervised Statistical Machine Translation

o Artetxe, Labaka and Agirre, 2018
e Main idea: use SMT instead of NMT

e Train n-gram embeddings using a variation of
skip-gram

 Learn a mapping between the embedding

spaces

Unsupervised Statistical Machine Translation

Mikel Artetxe, Gorka Labaka, Eneko Agirre
IXA NLP Group
University of the Basque Country (UPV/EHU)

{mikel.artetxe,gorka.labaka,e.agirre}@ehu.eus

o L1 n-gram
— embeddings
Corpus L1 —*  (Section 3.1)
N —
L2 n-gram
Corpus L2
\p_’/ e embeddings

Cross-lingual

mapping
(Section 3.2)

Phrase based SMT
Phrase table | Word & p.hrase
(Section 4.1) penalties
Language Distortion
model model
_/_—-('

Unsupervised
tuning
(Section 4.2)

Iterative
refinement
(Section 5)



Unsupervised Statistical Machine Translation

o Artetxe, Labaka and Agirre, 2018
e Main idea: use SMT instead of NMT

e Train n-gram embeddings using a variation of
skip-gram

 Learn a mapping between the embedding
spaces

e Create a phrase table by computing translation
probabilities using softmax over the cosine-
similarities to the 100 nearest neighbours
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o Artetxe, Labaka and Agirre, 2018
e Main idea: use SMT instead of NMT

e Train n-gram embeddings using a variation of
skip-gram

 Learn a mapping between the embedding
spaces

e Create a phrase table by computing translation
probabilities using softmax over the cosine-
similarities to the 100 nearest neighbours

 Tune the resulting system using iterative back-
translation
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e Much better than previous
unsupervised NMT approaches
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Lample et al. (2018) 14.31 15.05
Yang et al. (2018) 15.58 16.97 14.62 10.86
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Results

e Much better than previous
unsupervised NMT approaches
across 6 language pairs

e Unsupervised Tuning and Iterative
Back-Translation are important

o Still far from the supervised
approaches

WMT-14 WMT-16
FR-EN EN-FR DE-EN EN-DE DE-EN EN-DE
Artetxe et al. (2018c)  15.56 15.13 10.21 6.55 - -
Lample et al. (2018) 14.31 15.05 - - 13.33 0.64
Yang et al. (2018) 15.58 16.97 - - 14.62 10.86
Proposed system 25.87 26.22 17.43 14.08 23.05 18.23
WMT-14 WMT-16
FR-EN EN-FR DE-EN EN-DE DE-EN EN-DE
Unsupervised SMT 21.16 20.13 13.86 10.59 18.01 13.22
+ unsupervised tuning 22.17 22.22 14.73 10.64 18.21 13.12
+ iterative refinement (itl)  24.81 26.53 16.01 13.45 20.76 16.94
+ iterative refinement (it2)  26.13 26.57 17.30 13.95 22.80 18.18
+ iterative refinement (it3)  25.87 26.22 17.43 14.08 23.05 18.23
WMT-14 WMT-16
FR-EN EN-FR DE-EN EN-DE DE-EN EN-DE
NMT (transformer) - 41.8 - 28.4 - -
WMT best 35.0 35.8 29.0 20.6 40.2 34.2
Supervised SMT (europarl) 30.61 30.82 20.83 16.60 26.38 22.12
+ w/o lexical reord. 30.54 30.33 20.37 16.34 25.99 22.20
+ constrained vocab.  30.04 30.10 19.91 16.32 25.66 21.53
+ unsup. tuning 29.32 29.46 17.75 15.45 23.35 19.86
Unsup. Proposed system 25.87 26.22 17.43 14.08 23.05 18.23
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When Does It Really Work?

 Two recent works (2020) analyzed what i85 g
are the conditions required to make
unsupervised NMT useful

» Both found that:

e A critical condition is having the data
drawn from a similar domain

« . Domain  Domain BLEU |%]
® The prEtralnlng quallty haS d StrOng (en) (de/ru) de-en en-de ru-en en-ru
effect on the final model Newswire 233 199 119 93
Newswire Politics 11.5  12.2 2.3 2.5
Random 184 164 6.9 6.1
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