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The Machine Translation Objective

e = (Economic, growth, has, slowed, down, in, recent, years, .)
f= (La, croissance, économique, s'est, ralentie, ces, derni€res, années, .)
A

* We want to find the best translation f given a
source sentence e

o f= argrfwjax p(f’'le)

* How do we estimate p(fle) from data?



“Conventional” Statistical Machine Translation
Start with (lots) of parallel text:

la. ok-voon ororok sprok . 6a. lalok sprok izok jok stok .

1b. at-:oon bichat dat . 6b. wat dat krat quat cat .

2a. ok-drubel ok-voon anok plok sprok . 7a. 1lalok farok ororok lalok sprok isok enemok .
2b. at-!rubel at-wlroon pippat rrat dat . 7b. wat jjat bichat wat dat vat eneat .
S;T";;;;';;;;;'Z;;;';1;;;';{;;;;'? """"""" 8a. lalok brok amok plok mok .
3b. totat dat arrat vat hilat . 8b. iat lat pippat rrat nnat
Z;T"SC%SSQ'ZQZ;'S;SE-EI-QE'}S;'f """"""""" %a. wiwok nok isok kantok ok-yurp .
4b. at-voon krat pippat sat lat . 9b. totat nnat quat oloat at-lyurp .

5a. wiwok farok izok stok - 18;T'I;I;;';;;';;;';;;;;';;E\;;;';IS;'f """"""

5b. totat jjat quat cat . 10b. wat nnat gat mat bat hilat



“Conventional” Statistical Machine Translation

Learn the alignments (using the EM algorithm):
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“Conventional” Statistical Machine Translation

Learn the alignments (using the EM algorithm):

3':‘

source j

target :

mapping: 7 — ¢ = a;




“Conventional” Statistical Machine Translation

Extract phrase pairs:

source sentence 11 1% % 1 {1 11 L
gloss notation | VERY HAPPY WITH YOU AT TOGETHER .
target sentence | enjoyed my stay with you .

Viterbi alignment for F — E:

you * * |- W -

with *+ - - |ll - - H|-

stay © - |- - W -
=y ° ..
enjoyed| - H W

im - - : :

TEREYE

q = &

S



“Conventional” Statistical Machine Translation

Use a log linear model combination to score possible hypotheses:

Source Language Text

'

( P . ) Models
reprocessing

* P ‘/(Language Models j

Global Search \<—( Phrase Models j

E = argmax{p(E|F)} <—(wOrd Models ]

\ = argglax{%; Ambn(B, F)} J<—( Reordering Models j

./

( Postprocessing)

Target Language Text



“Conventional” Statistical Machine Translation

Use a log linear model combination to score possible hypotheses:

er geht ja nicht nach hause
C ne ) ¢ IS ) ( yes ) ( not ) ( ater ) ( house )
¢ It ) ¢ are ) donot ) to ( home )
(¢ , It ) (__goes ) C_( of course )j does not ) Cgaccording to;D ( chamber )
he 0 IS not in at home
e i — T ¢ 2,¢ > Fome >
( ne will be ) ( IS not ) under house )
( it goes ) ¢ does not ) ( return home )
he goes do not do not
‘ C — DI ¢ . D) )
¢ are ) ( following )
( Is after all ) ( not after )
does not to
g not L ) )
( IS not )
¢ are not )
( IS not a )

e Many translation options to choose from

— in Europarl phrase table: 2727 matching phrase pairs for this sentence
— by pruning to the top 20 per phrase, 202 translation options remain



“Conventional” Statistical Machine Translation

Use beam search to output the best hypothesis:

_H_EEEg.
ves 13
|
he \,- -y
goes | home
I \
- are — _
does not —>| go —PW
n B
it
= | to

backtrack from highest scoring complete hypothesis
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So far we had...

e | carn Alignments from a large parallel corpus
e Extract phrases from the alignments

e Extract some more features

® (And then some more...)

* Train one combined model using all the above + large language
model: estimate p(fle) as p(elf)p(f)

translation language

model model

® Run search on top of that



So far we had...

e | earn Alignmen

e Extract phrases

e Extract some mq

* (And then some

. . ' [N
e Train one comb i s | M 00"F“8En S O language
model: estimate memegenerator.nét

translation language

model model

® Run search on top of that
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SO let's take another approach...

 Maybe we can just estimate p(fle) directly”?

e First, let's get familiar with -



Recurrent Neural Networks (RNN’s)

 Enable variable length inputs (sequences)
o Sensitive to the order of the elements in the input

e Introduce a “memory/context” component to utilize history

O00000000
Y, | Output
,,,,,, h, | Hidden
e T Ly

Context Input




Recurrent Neural Networks (

* "Horizontally deep” architecture

* Recurrence equations:

RNN’s)

e Transition function: hy = H (hi—1,x:) = tanh(Wxy_1 + Uhs_1 + D)

e Qutput function: ¥¢ = Y (h¢) , commonly defined as softmax

yt yl yz yt-l yt
T T T ‘ T
ht — hl > h2 —> . . —> ht-l o ht >

T T
EN




The Softmax Function & Neg. Log. Loss

 Enables to output a probability distribution over k possible classes

« Y4 (the value of the network output vector on index i) is expected to hold log-likelihood of a
specific class (in our case, word):

e Qur loss function will be the sum of negative log softmax values over the correct sequence

Graph for -log(x)

1.5

-1.5 -1 -0.5

0.5

x:-1.76629099 y: UNDEFINED




Training (RNN’s) with Backpropagation Through Time

As usual, define a loss function (per sample, through time t =1,2,...,T):

T
Loss = J(O,x) = — ) J(O,x)
t=1

Derive the loss function w.r.t. parameters ©, starting at ¢t =1~

_ 9J¢
VO = 52
e Backpropagate through time - update and repeat fort — 1, untilt = 1
0J
S | t
* Eventually, update the weights:
© =9V0O
yt yl yg ytl yt
,,,,,,, hy | = | M hy [ hy | he [




LSTM walkthrough

 Processes a variable length input sequence: X = (Xl,xz, e ,xn)

 In each time step, holds a memory cell ¢; and a hidden state A;
used for predicting an output

 Has gates controlling the extent to which new content should be
memorized (input gate), old content should be erased (forget
gate), and current content should be exposed (output gate). More
formally:



LSTM walkthrough in 4 steps

 Processes a variable length input sequence: X = (Xl,xz, T 7xn)

 In each time step, holds a memory cell ¢; and a hidden state A;
used for predicting an output

 Has gates controlling the extent to which new content should be
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gate), and current content should be exposed (output gate). More

formally:
s )
1 £ G
oy sl = | & | W1, x]
output gates and Ot
memory cell A
em,:]_ayt: ‘ _C t | _tanh_



LSTM walkthrough in 4 steps

 Processes a variable length input sequence: X = (Xl,xz, T 7xn)

 In each time step, holds a memory cell ¢; and a hidden state A;
used for predicting an output
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_ . wingmpoana 11 Ct = J1 © Ct—1+ 1t O &

i ¢ G forget gates

I ft o

compute

input, forget, O " O

output gates and

memory cell A
update C t _tanh-

W [ht—la xt]




LSTM walkthrough in 4 steps

 Processes a variable length input sequence: X = (Xl,xz, T 7xn)

 In each time step, holds a memory cell ¢; and a hidden state A;
used for predicting an output

 Has gates controlling the extent to which new content should be
memorized (input gate), old content should be erased (forget
gate), and current content should be exposed (output gate). More

fOI’ma| |y compute current
memory cell S . A
S - - usineg izp}lfltceand II Ct - ﬁ @ Ct—l —I_ lt @ Ct
lt G foreetentes compute current
I Jt C IIl A = o, ®tanh(c;) |, fiadense

W ‘ [h[— 1, xt] and memory cell

compute

input, forget, O ¢ (9)

output gates and

memory cell A
update C t _tanh-




LSTM walkthrough in 4 steps

 Processes a variable length input sequence: X = (Xl,x2, T 7xn)

 In each time step, holds a memory cell ¢; and a hidden state A;
used for predicting an output

 Has gates controlling the extent to which new content should be
memorized (input gate), old content should be erased (forget
gate), and current content should be exposed (output gate). More

fOI’ma| |y compute current
1l S - 2
- . wgmputana L1 €t = J1 © Ct—1+ 1 O &
I { G forget gates t t
compute curren
I Jt C IIl A = o, ®tanh(c;) |, fiadense
in cortnl;ute ¢ — W ) [ht —1 Y, xt ] and memory cell
Ol:t[?l:lt ’ga(;:;feal’ld Ot 0
memne | & | |tanh v p(Xey1 =wlx1,- -, %) = exp(u(w, b)) /Z
compute current
Z = Lwey Xp(u(W,hr)) ououtprovavi

using softmax over
the hidden state
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LS TM walkthrough in 4 steps
@ ®) 6

Ct-1

1 O — > <

Neural Network Pointwise Vector
Layer Operation  Transfer oncatenate Copy

i1 To
I | -

compute current = W . [ht—h Xt]
input, forget, O¢ o)
output, memory é\t tanh
gate values -t — -



LS TM walkthrough in 4 steps
@ ®) 6

Ct-1

he1

\I Vad

' forget input memory output

\I g

] > : compute current
Neural Network Poiri?ise Vector memory cell II c p— f @ C —|— i @ é\
Layer Operation Transfer Concatenate Copy using input and t - t t_ 1 t t
L _ _ forget gates

i c
| £ -

compute current = W . [ht—h Xt]
input, forget, O¢ o)

output, memory é\t tanh
gate values L - -




LS TM walkthrough in 4 steps
@ ®) 6

4 4
Ct-1
he1
\ , ' forget input memory output j , I
\ > : te current
] O compu
Network  Pointwi X memory cell — . A
NewsiNetwork  fointwise  Vector  concorenate  cCopy using input and II Cr — ﬁ O Ci—1+1: OCt
I _ - forget gates compute current
It o) hi = o tanh(c hidden state
I III g : @ ( t) using output gate
ft o) and memory cell
compute current = W . [ht—h Xt]
input, forget, O¢ o)
output, memory é\t tanh
gate values L - -




LS TM walkthrough in 4 steps

p(Xip1 =wlx1, -, x;) = exp(u(w,h,))/Z

® b ®

a 4
Ct-1
he-1
\| , ' forget input memory output j ,
] > : compute current
Neural Network Poiriase Vector memory cell II C p— f @ C 1 —|— i @ 6
Layer Operation Transfer Concatenate Copy using input and t t t_ t t
- - _ - forget gates compute current
It o) hi = o tanh(c hidden state
I III g : @ ( t) using output gate
compute current ft _ G W [ h X ] and memory cell
- ft—1y A
input, forget, | Ot G p(xr41 = wlx1, -+, x) = exp(u(w,h))/Z compute current
output, memory | & tanh IV output probabilities
gate values - - ~- ~ / for prediction by
Z=Y cvexp(u(w, h))

using softmax over
the hidden state



The GRU

e “GGated Recurrent Unit”

o Simpler than LSTM

e +Similar performance

ll,

hi—y

the GRU architecture

Zt = 0O (U'

-
-

‘ iht.—l . ;IT,:) update gate

-~
.
~

o (W, - |hy_1,x]) reset gate
candidate h; = tanh (W - [ry * hy—q, ¢])

output h.t = (1 — Zt) X ht—l + 24 * ’It
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rt 1t 11
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Sequence 2 Sequence Learning - Background

e First (modern) models for NMT presented by Kalchbrenner et. al.
2013, Sutskever et al., 2014, Cho et al., 2014

e |nspired by RNN language modeling
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output (a.k.a the encoder-decoder architecture)
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rt 1ttt 1
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the cat sat on the mat </s> <s> le chat assis sur le tapis

Encoder Decoder



Seq2Seq decoder step - Zoom-In

“Ch at”

“Ie”



Seq2Seq decoder step - Zoom-In

“Chat”
le chat,'.as
t 41
> P P
£t
</s> |e c':f]at
1-hot vec NEENEEEEEEES EEEENEENEEEENEEEEEN inputvqcabukuy
for symbol size

at time t “le”



Seq2Seq decoder step - Zoom-In

“Chat”
le chat,’.assis
t 44
> P P
I
</s> |e éf]at
input symbol enr B R EEE embedding
embedding T size
1-hot vec NEENEEEEEEES EEEENEENEEEENEEEEEN inputvqcabukuy
for symbol size

at time t “le”



le chat,’.assis
b4t
F ot

</s> |e ¢hat

Seq2Seq decoder step - Zoom-In

RNN cell
(LSTM/GRU)

input symbol
embedding

1-hot vec
for symbol
at time t

“Ch at”

last
encoder
hidden
state

previous
hidden <+

state

BT T T T B BT [

T

“Ie”

embedding
size

input vocabulary
size



le chat,’.assis
b4t
F ot

</s> |e ¢hat

Seq2Seq decoder step - Zoom-In

RNN output
(hidden state)

RNN cell
(LSTM/GRU)

input symbol
embedding

1-hot vec
for symbol
at time t

“Ch at”

CHEEN B EEEEEEEE EEECENEN |

previous

hidden = <+—

state

BT T T T B BT [

T

“Ie”

last
encoder
hidden
state

hidden state
size

embedding
size

input vocabulary
size



Seq2Seq decoder step - Zoom-In

“Ch at”

output vector output vocabulary

SN EE ENSE ENNEE NEESE EE EEEE BB |

(unnormalized) size
RNN output CEEEN N NENNNNNN WEE HSEN | hidden state
(hidden state) size
le chat,’.assis T
? ? ? RNN I previous last
> bl b ce hidden — <«— &ncoder
hidd
f T.’.. ? (LSTM/G RU) state Istateen
<Js> e that T
input symbol enr B R EEE embedding
embedding T size
1-hot vec EEEEEEENEEES EENEENEENEENEENEEEN inputvqcabukuy
for symbol size

at time t “le”



Seq2Seq decoder step - Zoom-In

“Chat”
output vector
(normalized via BT 0T TR Tl o) T T T T [ outputvpcabulary
softmax) T Slze
output vector output vocabulary
: N EE BENN ENNNN EEECNE BN EEEE BN .
(unnormalized) size
(k?(lj\ldN Ouip‘:t) CEEEN N NENNNNNN WEE HSEN | h'dd;';:tate
iIaden State
le chat,’.assis T
? ? ? RNN I previous last
ce encoder
> P B hidden =~ +— | idden
f T.'. ? (LSTM/GRU) state state
s> e .c':h.at T
input symbol enr B R EEE embedding
embedding T size
1-hot vec HANEEENEEEEEE EENEEEEEEEEEEEEEEEE mputvqcabulary
for symbol size

at time t “le”



Seq2Seq decoder step - Zoom-In

pick the word . ,
with the highest chat
probability T
output vector
(normalized via ~ BT T Tl T T T I T T T T outputvpcabulary
softmax) Size
output vector output vocabulary
- UE HE ENNN ENNEE EEECE BN BEEE BB .
(unnormalized) size
(r?gldN Ouip‘:t) CEEEN N NENNNNNN WEE HSEN | h'dd;rz‘:tate
idden state
le chat,’.assis T
? ? ? previous last
Lk Srweny e ][
ol ol ( ) state state
<s> |e &hat T
input symbol enr B R EEE embedding
embedding T size
1-hot vec ENEEENEEEEEE ENNEEENENENEEEEEEEE |nputvqcabukuy
for symbol size

at time t “le”



The problem with vanilla seg2seq

“You can’t cram the meaning of a
whole %&!$# sentence into a
single $&!#* vector!” R,y Mooney




The Attention Mechanism (this work)

e [nstead of using a single vector as a fixed representation of the input
sequence, “attend” at each step to the relevant parts of the input

e The “importance” of each input element to the current prediction is
computed via a feed-forward network that gets the input element and the
current decoder state
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The Attention Mechanism

e And a bit more formally - in each decoder step:

e Compute attention scores for each input element:

score(hy, hg) = tanh(Wy [hy; hg))
e Normalize the attention scores so they sum up to 1:

o E oy OXD (score(hy, hs))
at(s) = algn( ts S) o ZS, exp (SCOTe(ht,FLSI))

e Compute ct: T,
Cy — E ajhj
J=1

e Compute attention output state:

ht — tanh(Wc [Ct; ht])
e Compute output probability distribution:

~

p(yt|y<t, 37) — SOftmaX(Wsht)



Decoding with Beam Search

* |nstead of keeping one best option on each time step, keep k best options
which are updated as-you-go

e Usually a small beam size is enough (5-12)
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BLEU score

* The most common way to measure machine translation accuracy

e Based on n-gram precision

>, Count;,(n-gram)
precision for each n-gram € C

n-gram size (usually 1-4) Pn = Y. Count(n-gram')
n-gram' € C’
Brevity Penalty - Small if gp—J 1 if ¢c>r
candidate is too short ell=r/c)  if ¢ <r
N
BLEU score BLEU=BP -exp z wnlogpn | w,=1/N

n=1



Results by Sentence Length - Before Attention

* Long sentences are very hard as they are
‘compressed” to a fixed length vector
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Results - After Attention

* The attention mechanism helps to overcome the issue
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Results - After Attention

The model learns nice alignments:
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More Recent Improvements (Sennrich, 2016)

BPE - work at sub-word BPE
level to create an open lowest</ws — lowest</w>’
vocabulary

english german

(real-mono) __  (machine)

Use monolingual data for /
training through back- german english
translation (real-parallel,machine) (real-parallel+real-mono)

- | abc—Xxyz
Bi-directional Decoding:

abc—zyxX
And many others...



Attention in Other NLP tasks

“BILSTM'’s with attention seem to be

taking over the field and improving
our ability to do everything” (Chris
Manning, 2016)

Reading comprehension (Hermann
et al., 2015; Blunsom, 2015)

Text Summarization (Rush et. al,
2015)

And many more...

by ent40 ,ent62 correspondent updated 9:49 pm et ,thumarch 19,2015 (ent62 ) aent88 was killedin a parachute

accidentinent87 ,ent28 ,near ent66 ,a ent47 official told ent62 on wednesday .he was identified thursday as special

warfare operator 3rd cl- ,of ent44 jent13 M ent49 distinguished himself consistently throughout his

career .he was the epitome of the quiet professionalinallfacets of his life ,and he leaves aninspiring legacy of natural
tenacity andfocused commitment for posterity ," the ent47 said ina news release .ent49 joined the seals in september
after enlisting inthe ent47 two years earlier .he was married,the ent47 said .initialindications are the parachute failed

to openduring a jump as part of a training exercise .ent49 was part of aent57 -based ent88 team .
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summary

What do we still need?

However:

We still have very primitive methods for building and accessing
memories or knowledge

Current models have almost nothing for developing and executing
goals and plans

We still have quite Inadequate abilities for understanding and
using inter-sentential relationships

We still can’t at a large scale do elaborations from a situatio
using common sense knowledge




Any  Questions 7

Questions diverses ?
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