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The Machine Translation Objective

• We want to find the best translation f given a 
source sentence e

• f = argmax p(f’|e)

• How do we estimate p(f|e) from data?
f’



“Conventional” Statistical Machine Translation
Start with (lots) of parallel text:
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“Conventional” Statistical Machine Translation
Use beam search to output the best hypothesis:
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So let’s take another approach…

• Maybe we can just estimate p(f|e) directly?

• First, let’s get familiar with -



• Enable variable length inputs (sequences) 

• Sensitive to the order of the elements in the input 

• Introduce a “memory/context” component to utilize history

Recurrent Neural Networks (RNN’s)

Output

Hidden

InputContext



• “Horizontally deep” architecture 

• Recurrence equations: 

• Transition function: 

• Output function:                     , commonly defined as softmax

Recurrent Neural Networks (RNN’s)

yt = Y (ht)

ht = H(ht�1, xt) = tanh(Wxt�1 + Uht�1 + b)



• Enables to output a probability distribution over k possible classes 

• d    (the value of the network output vector on index i) is expected to hold log-likelihood of a 
specific class (in our case, word): 

• Our loss function will be the sum of negative log softmax values over the correct sequence

The Softmax Function & Neg. Log. Loss

p(x = i) = eyi
kP

j=1
eyj



• As usual, define a loss function (per sample, through time                     ): 

• Derive the loss function w.r.t. parameters    , starting at           : 

• Backpropagate through time - update and repeat for         , until          : 

• Eventually, update the weights: 

Training (RNN’s) with Backpropagation Through Time 

r⇥ = �Jt
�⇥ t = T

t = 1, 2, ..., T

t = 1t� 1

⇥ = �r⇥

Loss = J(⇥, x) = �
TP

t=1
Jt(⇥, xt)

r⇥ = @Jt
@⇥

r⇥ = r⇥+ @Jt
@⇥
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LSTM walkthrough in 4 steps
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• “Gated Recurrent Unit” 

• Simpler than LSTM 

• ±Similar performance

The GRU

update gate

reset gate

candidate 

output

the GRU architecture
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The Attention Mechanism 
• And a bit more formally - in each decoder step:

• Compute attention scores for each input element:

• Normalize the attention scores so they sum up to 1:

• Compute ct:

• Compute attention output state:

• Compute output probability distribution:

ct =
T
xX

j=1

aj h̄j



Decoding with Beam Search

• Instead of keeping one best option on each time step, keep k best options 
which are updated as-you-go

• Usually a small beam size is enough (5-12)

Greedy Search Beam Search (k=2)



BLEU score
• The most common way to measure machine translation accuracy

• Based on n-gram precision

precision for each 
n-gram size (usually 1-4)

Brevity Penalty - Small if 
candidate is too short

BLEU score ,



Results by Sentence Length - Before Attention

• Long sentences are very hard as they are 
“compressed” to a fixed length vector



Results - After Attention

• The attention mechanism helps to overcome the issue



Results - After Attention

• The model learns nice alignments:



Results - WMT 16’



Results - WMT 16’



Results - WMT 16’



More Recent Improvements (Sennrich, 2016)

• BPE - work at sub-word 
level to create an open 
vocabulary  

• Use monolingual data for 
training through back-
translation 

• Bi-directional Decoding: 

• And many others…

BPE

english 
(real-mono)

german 
(machine)

german 
(real-parallel,machine)

english 
(real-parallel+real-mono)

a b c x y z
a b c z y x



Attention in Other NLP tasks

• “BiLSTM’s with attention seem to be 
taking over the field and improving 
our ability to do everything” (Chris 
Manning, 2016) 

• Reading comprehension (Hermann 
et al., 2015; Blunsom, 2015) 

• Text Summarization (Rush et. al, 
2015)  

• And many more…



Summary
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