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The problem with “vanilla” seq2seq

“You can’t cram the meaning of a
whole %&!$# sentence into a
single $&!#* vector!” R,y Mooney
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“Exploiting Similarities among
Languages for Machine
Translation” - Mikolov, Le &
Sutskever, 2013

Observed a similar structure in
unsupervised embedding
spaces of different languages,
after rotation

Learned a rotation matrix to
translate words from one
embedding space to another with
some success

Weakly supervised - requires a
small dictionary (5000 entries)
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Unsupervised NMT: A Tale of Two Papers

e Both recently submitted to ICLR 2018 with critical acclaim
(October 2017)

e Similar motivations - both try to tackle:

e Structure/Fluency - how to determine the correct word
order in the output?

e Semantics/Adequacy - how to pick the correct translations
given the source?

e Very similar modeling tricks (with slight differences)
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Shared encoder (L1/L2)

e Model Architecture:

e Shared GRU encoder, Separate
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e Main “Tricks”:

e Fixed, unsupervised cross-lingual embeddings
(Adequacy)

o Backtranslation loss (Adequacy)

e Denoising auto-encoder loss (Fluency)
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e Artetxe, Labake & Agirre, ACL 2017
e Start with monolingual embedding spaces in two languages (trained using word2vec)
e Learn alinear mapping from one language to the other:
e Start with a seed dictionary. Clever idea: use numerals (5-5, 1989-1989...) as seed dictionary - fully
unsupervised
. 2
e Optimize the mappingW w.r.t the dictionary: arg mmz ”Xi*W o Zj*
weo(n) :
©Z o XW
w
Seed dictionary English
Txakur [X1 7 Z1 4] Dog
Sagar | X2« Z3«| Apple
From Artetxe, ACL 2017 S 7| catendar
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e Artetxe, Labake & Agirre, ACL 2017
e Start with monolingual embedding spaces in two languages (trained using word2vec)

e Learn alinear mapping from one language to the other:

e Start with a seed dictionary. Clever idea: use numerals (5-5, 1989-1989...) as seed dictionary - fully
unsupervised

2

e Optimize the mappingW w.r.t the dictionary: arg minz ”Xi*W - Zj*
weo(n) :

* Extract a new dictionary and repeat iteratively until a convergence threshold is met

From Artetxe, ACL 2017
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Learning Semantics - Back-translation

We need to learn a mapping from one language (L1) into another (L2), but we don’t have parallel
data

Solution: create synthetic parallel data by translating with the current model (possible since the
model is bidirectional)

Use the synthetic data for training using cross entropy loss
This is not entirely useless since the cross-lingual embeddings do carry some alignment signal

Train the model to predict
this transition

/ \ Synthetic
L1
L2
Sentence
\ / Sentence
translate
using the

current model
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Learning Structure - “Denoising” Auto-encoders

The decoder needs to learn how to organize the words on the target side

We could train it to predict a sentence given itself - auto-encoding

e But this would lead it to learn trivial copying!

* Introduce “noise” (by randomly swapping adjacent words, N/2 times) in the input,
to force the decoder to learn word ordering

Using conventional cross entropy loss

cat The on sat mat the — The cat sat on the mat

manger J'aime croissants des — J'aime manger des croissants
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* Training iterations alternate between denoising and back-translation
e Each training iteration is composed of:

* Denoising batch: L1 to L1

* Denoising batch: L2 to L2

e Back-translation batch: L1 to L2

* Back-translation batch: L2 to L1
e When do we stop? Can’t use parallel validation set!

e Train for a fixed amount of iterations (300k)
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Supervised 6. Comparable NMT 20.48 19.89 15.04 11.05
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1. Baseline (emb. nearest neighbor) 9.98 6.25 7.07 4.39

Unsupervised 2. Proposed (denoising) 7.28 5.33 3.64 2.40

P 3. Proposed (+ backtranslation) 15.56 15.13 10.21 6.55

4. Proposed (+ BPE) 15.56 14.36 10.16 6.89

Semi-supervised 5. Proposed (full) + 100k parallel 21.81 21.74 15.24 10.95

Supervised 6. Comparable NMT 20.48 19.89 15.04 11.05

P 7. GNMT (Wu et al., 2016) - 38.95 - 24.61

* Denoising alone degrades performance of embeddings nearest-neighbor

e Denoising+Back-translation improves results significantly

e No clear benefit from BPE (perhaps hurts embedding learning?)

* Semi supervised learning can also use this framework with notable gains

» Still a very large gap from the supervised approach (but a nice start nonetheless)
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lingual embeddings (Adequacy)

Backtranslation loss (Adequacy)

Denoising auto-encoder loss (Fluency)

Adversarial loss
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Adversarial Learning

* Introduced by Ganin et al., 2016 for domain adaption in computer vision

 The general idea: force the model to “unlearn” a specific objective to make it learn better
representation for the target objective

e Used twice here:

e In the cross-lingual embedding learning - to learn a mapping from one embedding space

to the other:
(A) ST (B)
X Y
Conneau et al. 2017
WX

deep

e |Inthe NMT training - to “push” the representations from the two languages to a shared
“semantic” space

pp (1|21, .y 2m) Hl pp(£|2;),
J:

£adv (eenca Z‘HD) — 4:(:cz-,£i)[long (gjle(x?ngz))]
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Unsupervised Model Selection Criterion

 When do we stop training without a validation set? can we do better than fixed
amount of updates?

e Measure “corruption” when translating a sentence back and forth using the
model (in both directions), using BLEU

* Correlates well with “supervised” BLEU, no need for parallel sentences

30 MS(G, d) Dsrca Dtgt) —
i 29 1 -
5 20 §1Ex~D .. IBLEU (z, Mrc—tgt © Mtgt%src(x))] +
1 .
—lExNDtgt BLEU(:TJ, Mtgt—)src O src—tigt (IIT))]

- Source -> Target BLEU
-+« Target -> Source BLEU
- =+ Unsupervised Criterion

0 5 10 15 20 25 30
number of epochs
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Results

Multi30k-Task1 WMT

en-fr fr-en de-en en-de en-fr fr-en de-en en-de
Supervised 56.83 50.77 3838 35.16 | 27.97 26.13 2561 21.33
word-by-word 8.54 16.77 15.72 5.39 6.28 10.09 10.77 7.06
word reordering - - - - 6.68 11.69 10.84 6.70
oracle word reordering 11.62 24.88 18.27 6.79 | 10.12 20.64 1942 11.57
Our model: 1stiteration 27.48 28.07 23.69 1932 | 12.10 11.79 11.10 8.86
Our model: 2nd iteration 31.72 3049 24.73 21.16 | 1442 1349 13.25 9.75
Our model: 3rd iteration 32.76 32.07 26.26 2274 | 15.05 14.31 13.33 0.64
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Results

Multi30k-Task1 WMT
en-fr frren de-en en-de en-fr frren de-en en-de
Supervised 56.83 50.77 3838 35.16 | 27.97 26.13 2561 21.33
word-by-word 8.54 16.77 15.72 5.39 6.28 10.09 10.77 7.06

word reordering - - - - 6.68 11.69 10.84 6.70
oracle word reordering 11.62 2488 1827 6.79 | 10.12 2064 1942 11.57

Our model: 1stiteration 27.48 28.07 2369 1932 | 12.10 11.79 11.10 8.86
Our model: 2nd iteration 31.72 3049 24.73 21.16 | 1442 1349 13.25 9.75
Our model: 3rd iteration 32.76 32.07 26.26 22.74 | 15.05 14.31 13.33 0.64

 Model significantly outperforms word-by-word baselines, showing the
Importance of the back-translation + denoising + adversarial approach

e Supervised models are still significantly better



Results

0 1 2 3 10t 100 108 107
number of iterations number of parallel training sentences

 Unsupervised models performance is equivalent to a
supervised model with ~100k parallel sentences
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en-fr fr-en de-en en-de
Aed =0 2544 27.14 2056 14.42
Without pretraining 25.29 26.10 2144 17.23
Without pretraining, A.g =0 8.78 9.15 7.52 6.24
Without noise, C(z) = z 16.76 16.85 16.85 14.61
Aauto = 0 24.32 20.02 19.10 14.74
Aado = 0 24.12 22774 19.87 15.13
Full 2748 28.07 23.69 19.32

 Adversarial loss gives a nice boost of ~3-6 points

Best model obtained using all components together

Back-translation, pre-trained word vectors and de-noising are crucial
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Comparison

e Both models:
* Heavily rely on bilingual word embeddings
* Heavily rely on de-noising and back-translation using a shared encoder
* Notable Differences:
* Perform back-translation once per epoch (Lample et al.) vs. after every update (Artetxe et al.)
* BPE and word-based modeling (Artetxe et al.) vs. word based alone (Lample et al.)
* Fixed embeddings (Artetxe et al.) vs. changing (Lample et al.)
* Different decoder per language (Artetxe et al.) vs. shared encoder (Lample et al.)
* Adversarial training (Lample et al.)

e Slightly different noise method (Lample et al.) - swapping and dropping words, also adding
noise before back-translation

» Use unsupervised model selection criterion (Lample et al.) vs. fixed amount of updates

* |nitialize back-translation using nearest-neighbor word-by-word translation (Lample et al.)
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Conclusions

e Still along way to go!
e Results are still very weak in comparison to the supervised approach
* First two papers to tackle the task (in the neural context)

* New avenue for future research
e Character level modeling
* Better semi-supervised learning
e Multilingual setting - more than 2 languages

e Other sequence to sequence tasks with scarce parallel data



Al

Thanks!
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