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Neural Machine Translation

• Introduced in 2014

• Driving the current state of the art

• Widely adopted in industry (Google Translate, Facebook…)
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A Price to Pay: (Parallel) Data

• NMT is better than SMT only when 
given >10m parallel words

• NMT is better than “Semi Supervised” 
SMT (SMT + a large language model) 
only when given >100m parallel words

• But getting parallel data is expensive!

• Can we do well using only 
monolingual data?

Koehn & Knowles, 2017
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Motivation - Mikolov et al. 2013

• “Exploiting Similarities among 
Languages for Machine 
Translation” - Mikolov, Le & 
Sutskever, 2013

• Observed a similar structure in 
unsupervised embedding 
spaces of different languages, 
after rotation

• Learned a rotation matrix to 
translate words from one 
embedding space to another with 
some success

• Weakly supervised - requires a 
small dictionary (5000 entries)
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Unsupervised NMT:  A Tale of Two Papers

• Both recently submitted to ICLR 2018 with critical acclaim 
(October 2017)

• Similar motivations - both try to tackle: 

• Structure/Fluency - how to determine the correct word 
order in the output?

• Semantics/Adequacy - how to pick the correct translations 
given the source?

• Very similar modeling tricks (with slight differences)
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Paper I: Artetxe, Labaka, Agirre & Cho

• Model Architecture:

• Shared GRU encoder, Separate 
GRU decoders 

• Attention

• Main “Tricks”:

• Fixed, unsupervised cross-lingual embeddings 
(Adequacy)

• Backtranslation loss (Adequacy)

• Denoising auto-encoder loss (Fluency)
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Learning Semantics - Back-translation

• We need to learn a mapping from one language (L1) into another (L2), but we don’t have parallel 
data

• Solution: create synthetic parallel data by translating with the current model (possible since the 
model is bidirectional)

• Use the synthetic data for training using cross entropy loss

• This is not entirely useless since the cross-lingual embeddings do carry some alignment signal

L1  
Sentence

translate 

using the


current model

Synthetic 
L2  

Sentence

Train the model to predict  
this transition
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Learning Structure - “Denoising” Auto-encoders

• The decoder needs to learn how to organize the words on the target side

• We could train it to predict a sentence given itself - auto-encoding

• But this would lead it to learn trivial copying!

• Introduce “noise” (by randomly swapping adjacent words, N/2 times) in the input, 
to force the decoder to learn word ordering

• Using conventional cross entropy loss

The cat sat on the matcat The on sat mat the

J'aime manger des croissantsmanger J'aime croissants des
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• Training iterations alternate between denoising and back-translation

• Each training iteration is composed of:

• Denoising batch: L1 to L1

• Denoising batch: L2 to L2

• Back-translation batch: L1 to L2

• Back-translation batch: L2 to L1

• When do we stop? Can’t use parallel validation set!

• Train for a fixed amount of iterations (300k)
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Results

• Denoising alone degrades performance of embeddings nearest-neighbor

• Denoising+Back-translation improves results significantly

• No clear benefit from BPE (perhaps hurts embedding learning?)

• Semi supervised learning can also use this framework with notable gains

• Still a very large gap from the supervised approach (but a nice start nonetheless)
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• Model Architecture:

• Shared GRU encoder, Shared GRU 
decoder

• Attention

• Main “Tricks”:

• Changing, adversarially trained unsupervised cross-
lingual embeddings (Adequacy)

• Backtranslation loss (Adequacy)

• Denoising auto-encoder loss (Fluency)

• Adversarial loss



Adversarial Learning



Adversarial Learning
• Introduced by Ganin et al., 2016 for domain adaption in computer vision



Adversarial Learning
• Introduced by Ganin et al., 2016 for domain adaption in computer vision

• The general idea: force the model to “unlearn” a specific objective to make it learn better 
representation for the target objective



Adversarial Learning
• Introduced by Ganin et al., 2016 for domain adaption in computer vision

• The general idea: force the model to “unlearn” a specific objective to make it learn better 
representation for the target objective

• Used twice here: 



Adversarial Learning
• Introduced by Ganin et al., 2016 for domain adaption in computer vision

• The general idea: force the model to “unlearn” a specific objective to make it learn better 
representation for the target objective

• Used twice here: 

• In the cross-lingual embedding learning - to learn a mapping from one embedding space 
to the other:

Conneau et al. 2017



Adversarial Learning
• Introduced by Ganin et al., 2016 for domain adaption in computer vision

• The general idea: force the model to “unlearn” a specific objective to make it learn better 
representation for the target objective

• Used twice here: 

• In the cross-lingual embedding learning - to learn a mapping from one embedding space 
to the other:

• In the NMT training - to “push” the representations from the two languages to a shared 
“semantic” space

Conneau et al. 2017
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Unsupervised Model Selection Criterion
• When do we stop training without a validation set? can we do better than fixed 

amount of updates?

• Measure “corruption” when translating a sentence back and forth using the 
model (in both directions), using BLEU

• Correlates well with “supervised” BLEU, no need for parallel sentences
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Results

• Unsupervised models performance is equivalent to a 
supervised model with ~100k parallel sentences
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Ablation Study

• Back-translation, pre-trained word vectors and de-noising are crucial 

• Adversarial loss gives a nice boost of ~3-6 points 

• Best model obtained using all components together
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Comparison
•Both models: 

•Heavily rely on bilingual word embeddings

•Heavily rely on de-noising and back-translation using a shared encoder

•Notable Differences:

• Perform back-translation once per epoch (Lample et al.) vs. after every update (Artetxe et al.)

•BPE and word-based modeling (Artetxe et al.) vs. word based alone (Lample et al.)

• Fixed embeddings (Artetxe et al.) vs. changing (Lample et al.)

•Different decoder per language (Artetxe et al.) vs. shared encoder (Lample et al.)

• Adversarial training (Lample et al.)

• Slightly different noise method (Lample et al.) - swapping and dropping words, also adding 
noise before back-translation

•Use unsupervised model selection criterion (Lample et al.) vs. fixed amount of updates

• Initialize back-translation using nearest-neighbor word-by-word translation (Lample et al.)



Conclusions



Conclusions
• Still a long way to go!



Conclusions
• Still a long way to go!

• Results are still very weak in comparison to the supervised approach



Conclusions
• Still a long way to go!

• Results are still very weak in comparison to the supervised approach

• First two papers to tackle the task (in the neural context)



Conclusions
• Still a long way to go!

• Results are still very weak in comparison to the supervised approach

• First two papers to tackle the task (in the neural context)

• New avenue for future research



Conclusions
• Still a long way to go!

• Results are still very weak in comparison to the supervised approach

• First two papers to tackle the task (in the neural context)

• New avenue for future research

• Character level modeling



Conclusions
• Still a long way to go!

• Results are still very weak in comparison to the supervised approach

• First two papers to tackle the task (in the neural context)

• New avenue for future research

• Character level modeling

• Better semi-supervised learning



Conclusions
• Still a long way to go!

• Results are still very weak in comparison to the supervised approach

• First two papers to tackle the task (in the neural context)

• New avenue for future research

• Character level modeling

• Better semi-supervised learning

• Multilingual setting - more than 2 languages



Conclusions
• Still a long way to go!

• Results are still very weak in comparison to the supervised approach

• First two papers to tackle the task (in the neural context)

• New avenue for future research

• Character level modeling

• Better semi-supervised learning

• Multilingual setting - more than 2 languages

• Other sequence to sequence tasks with scarce parallel data



Thanks!
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