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Word pair counts:
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ok-yurp - at-yurp _
ok-voon - at-voon [lanslation

ororok - bichat Model
plok - rrat
sprok - dat

zanzanok - zanzanat
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e CS Masters @ Bar llan
(2011-2015, machine translation
evaluation)

e CS Phd @ Bar llan (2016-2020,
neural machine translation)

e Google (2018-present, multilingual
machine translation, domain
adaptation)

e Let’s collaborate (after the course)!
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e Name?
e Background?

 Which languages
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Course Objectives

e Understand and describe
state-of-the-art models and
algorithms for machine
translation.

Add & Norm

Figure 1: The Transformer - model architecture.

* Implement and apply such

def attention(query, key, value, mask=None, dropout=None):

methOdS USIng reaI_WorId "Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
taSkS. scores = torch.matmul(query, key.transpose(-2, =1)) \
/ math.sqrt(d_k)

German-English

 Evaluate and analyze the
quality of machine translation

systems.
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Logistics

e 3 Home assignments, individual submissions

* Will require using a deep learning framework (pytorch/
other)

* Grade: 50% assignments, 50% exam
e Visiting hours - after class, schedule in advance

* To succeed - attend, do the assignments, prepare for the
exam

e My email: roee.aharoni@gmail.com
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Other things to note

 Advanced topics - attendance is important

e Diverse group - use it, ask questions, be
patient

e First time in its current structure - give
feedback!
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e T[ransitions from one
language to another

 Preserves the meaning NS MVASESC::

e Fluent output (?) PLEASE PRESENT
YOUR OCTOPUS

e Preserves style (?)

@ - ENGRISH FuNNy.com

e And many more...
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» Complexity of Syntax - several ways to parse a sentence:

* More generally - lack of context
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S

Understand Language/ /N(\

Linguistics

° SyntaX, MOFIOhO|09y, Cololrless gre!en ide!as slelep furicl)usly.
Typology...
P(B| A)- P(A)
e Probability/Statistics P(A| B) = P(B)

e Machine Learning

® ® ®
[_,_lj - l » A — l — l
e Neural Networks (“Deep & & © 6

. 39
Learn I n g ) An unrolled recurrent neur al networ k.
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Pieter Brueghel the Elder (1563)



First NLP problem: the German Enigma




‘| think we are forced to conclude that ...
probabilistic models give no particular insight
Into some of the basic problems of syntactic
structure.”

—Noam Chomsky, “Syntactic structures”

“[1]t must be recognized that the notion of
‘probability of a sentence’ is an entirely useless
one, under any known interpretation of this term.”

—in “Challenges to empiricism” (1969)




Association for Machine Translation
and Computational Linguistics
founded




A STATISTICAL APPROACH TO MACHINE TRANSLATION

Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra, Fredrick Jelinek
John D. Lafferty, Robert L. Mercer, and Paul S. Roossin

IBM
Thomas J. Watson Research Center

The field of machine translation is almost as old as the
modern digital computer. In 1949 Warren Weaver sug-
gested that the problem be attacked with statistical meth-
ods and ideas from information theory, an area which he,
Claude Shannon, and others were developing at the time
(Weaver 1949). Although researchers quickly abandoned
this approach, advancing numerous theoretical objections,
we believe that the true obstacles lay in the relative impo-
tence of the available computers and the dearth of machine-
readable text from which to gather the statistics vital to
such an attack. Today, computers are five orders of magni-
tude faster than they were in 1950 and have hundreds of
millions of bytes of storage. Large, machine-readable cor-
pora are readily available. Statistical methods have proven
their value in automatic speech recognition (Bahl et al.
1983) and have recently been applied to lexicography
(Sinclair 1985) and to natural language processing (Baker

“mmn -

INTRODUCTION

Yorktown Heights, NY

In this paper, we present a statistical approach to machine translation. We describe the application of our
approach to translation from French to English and give preliminary results.

sentence in one language is a possible translation of any
sentence in the other. We assign to every pair of sentences
(S. T) a probability, Pr(715), to be interpreted as the
probability that a translator will produce T in the target
language when presented with S in the source language
We expect Pr(71S) to be very small for pairs like (Le
matin je me brosse les dents| President Lincoln was a good
lawyer) and relatively large for pairs like (Le president
Lincoln était un bon avocat| President Lincoln was a good
lawyer). We view the problem of machine translation then
as follows. Given a sentence 7 in the target language, we
seck the sentence S from which the translator produced 7
We know that our chance of error is minimized by choosing
that sentence S that is most probable given 7. Thus, we
wish to choose S 50 as to maximize Pr(S| 7). Using Bayes'
theorem, we can write

Pr(S)Pr(T]S)

Pr(SIT) = Pr (T)

IBM’s statistical MT paper published In
Computational Linguistics
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Sequence to Sequence Learning
with Neural Networks

Ilya Sutskever Oriol Vinyals Quoc V. Le
Google Google Google
ilyasul@google.com vinyalsf@google.com qvll@google.com
Abstract

Deep Neural Networks (DNNs) are powerful models that have achieved excel-
lent performance on difficult learning tasks. Although DNNs work well whenever
large labeled training sets are available, they cannot be used to map sequences to
sequences. In this paper, we present a general end-to-end approach to sequence
learning that makes minimal assumptions on the sequence structure. Our method
uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence
to a vector of a fixed dimensionality, and then another deep LSTM to decode the
target sequence from the vector. Our main result is that on an English to French
translation task from the WMT-14 dataset, the translations produced by the LSTM
achieve a BLEU score of 34.8 on the entire test set, where the LSTM’s BLEU
score was penalized on out-of-vocabulary words. Additionally, the LSTM did not
have difficulty on long sentences. For comparison, a phrase-based SMT system
achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM
to rerank the 1000 hypotheses produced by the aforementioned SMT system, its

First papers on (working) neural
machine translation
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A Neural Network for Machine Translation, at Production

Scale
Tuesday, September 27, 2016

Posted by Quoc V. . Le & Mike Schuster, Research Scientists, Google Brain Team
Ten years ago, we announced the launch of Google Translate, together with the use of Phrase-
ased Machine Translation as the key algorithm behind this service. Since then, rapid advances in

machlne intelligence have improved our speech recognition and image recognition capabilities, but
improving machine translation remains a challenging goal.

Today we announce the Google Neural Machine Translation system (GNMT), which utilizes state-of-
the-art training techniques to achieve the largest improvements to date for machine translation
quallty Our full research results are described in a new technical report we are releasing today:

'Ht s Neural Machine Translatic "“::' stle "y,Cu‘,"k.' the I\L””L” reen Human and Machine

! AL.'.'.:w.'r_.‘Tl._.'.' [1]

Google Translate launches the world’s first
neural machine translation system
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e Speech Translation
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Translation:
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Keanu Reeves

From Wikipedia, the free encyclopedia

"Keanu" redirects here. For other uses, see Keanu (disambiguation).

Keanu Charles Reeves (/ki'a.nu/ kee-AH-noo; 2314 born September 2, 1964) is a Canadianl®! actor
and musician. He gained fame for his starring roles in several blockbuster films, including comedies
from the Bill and Ted franchise (1989-2020); action thrillers Point Break (1991), Speed (1994), the
John Wick franchise (2014-present); psychological thriller The Devil's Advocate (1997); supernatural
thriller Constantine (2005); and science fiction/action series The Matrix (1999-2003). He has also
appeared in dramatic films such as Dangerous Lialsons (1988), My Own Private Idaho (1991), and
Little Buddha (1993), as well as the romantic horror Bram Stoker’s Dracula (1992).

Contents [hide)
1 Early life
2 Career
2.1 Early career: 1980-1986
2.2 Breakthrough: 1986-1994
2.3 Rise of prominence in film: 1994-1999
2.4 Hollywood stardom and The Matrix trilogy: 1999-2009
2.5 Eclectic flmmaking and John Wick: 2009-present
2.6 Future projects
3 Personal life
3.1 Family and views
3.2 Legal incidents
3.3 Philanthropy and business
4 Filmography
5 Notes
6 References
7 Further reading
8 External links
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From Wikipedia, the free encyclopedia

After
"Keanu" redirects here. For other uses, see Keanu (disambiguation).
Keanu Charles Reeves (/ki'a.nu/ kee-AH-noo; 2314 born September 2, 1964) is a Canadianl®! actor
= Go g|e Translate "a and musician. He gained fame for his starring roles in several blockbuster films, including comedies
. from the Bill and Ted franchise (1989-2020); action thrillers Point Break (1991), Speed (1994), the
John Wick franchise (2014-present); psychological thriller The Devil's Advocate (1997); supernatural
TURKISH g ENGLISH thriller Constantine (2005); and science fiction/action series The Matrix (1999-2003). He has also
appeared in dramatic films such as Dangerous Lialsons (1988), My Own Private Idaho (1991), and
Little Buddha (1993), as well as the romantic horror Bram Stoker’s Dracula (1992).
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Speech Translation
Chinese input: §I R X4 ESE ISV B B= =R
pinyin: jidng zémin dui m&igué zdngtdng de fayan bidoshi

Word-by-Word
Translation:

D O C u m e nt Tra n S | at i O n Tm:;:'::';:"(?;i 3 Jiang zemin expressed his welcome to

Simultaneous s 2 . s
Translation (wait 5): J+ang zemin expressed his

river zemin correct united states president of speak express

Baseline
Tranlation (gready):

Baseline
Tranlation (beam 5):

Gender Bias

Keanu Reeves

From Wikipedia, the free encyclopedia

After
"Keanu" redirects here. For other uses, see Keanu (disambiguation).
MOTHERBOARD So——
TECHBYVICE Keanu Charles Reeves (/ki'a.nu/ kee-AH-noo; 2314 born September 2, 1964) is a Canadianl®! actor
= Go g|e Translate n‘, and musician. He gained fame for his starring roles in several blockbuster films, including comedies

» from the Bill and Ted franchise (1989-2020); action thrillers Point Break (1991), Speed (1994), the

Why Is Google Translate Spitting Out :
John Wick franchise (2014—present); psychological thriller The Devil's Advocate (1997); supernatural

s‘ H |- H , TURKISH g ENGLISH thriller Constantine (2005); and science fiction/action series The Matrix (1999-2003). He has also
I : O b u St I I ‘ ’: ;S InISter Rellglous Prophecles = appeared in dramatic films such as Dangerous Lialsons (1988), My Own Private Idaho (1991), and
a Little Buddha (1993), as well as the romantic horror Bram Stoker’s Dracula (1992).
Google Translate is moonlighting as a deranged oracle —and experts (o] bll’ dOktOI’ X

say it's likely because of the spooky nature of neural networks.
Contents [hide)

1 Early life

By Jon Christian \.r’ 4 D

Jul202018,8:04pm [l Share W Tweet & Snap

2 Career
2.1 Early career: 1980-1986
2.2 Breakthrough: 1986-1994
Translations are gender-specific. LEARN MORE 2.3 Rise of prominence in film; 1994-1999
2.4 Hollywood stardom and The Matrix trilogy: 1999-2009

She iS a dOCtor (feminine) 2.5 Eclectic filmmaking and John Wick: 2009-present
2.6 Future projects

Many more!
3 Personal life

3.1 Family and views

3.2 Legal incidents
he is a doctor (mascuiine) 3.3 Philanthropy and business
4 Filmography
5 Notes
6 References

7 Further reading
8 External links



Additional Applications



Additional Applications

._ n Emily M. Bender

0 @emilymbender
Dear ML and #NLProc researchers: Just

because you can cast something as a
seqZseq problem DOES NOT MEAN you

should.



Additional Applications

* Speech recognition &S Emily M. Bender
0 @emilymbender

Dear ML and #NLProc researchers: Just

because you can cast something as a
seqZseq problem DOES NOT MEAN you

should.



Additional Applications

e Speech recognition &Y Emily M. Bender
0 @emilymbender
e Summarization Dear ML and #NLProc researchers: Just

because you can cast something as a
seqZseq problem DOES NOT MEAN you

should.



Additional Applications

e Speech recognition &Y Emily M. Bender
- @emilymbender
e Summarization Dear ML and #NLProc researchers: Just

because you can cast something as a
e Text style-transfer seqZseq problem DOES NOT MEAN you
should.



Additional Applications

Speech recognition
Summarization
Text style-transfer

Paraphrasing

‘_ g Emily M. Bender

0 @emilymbender

Dear ML and #NLProc researchers: Just

because you can cast something as a
seqZseq problem DOES NOT MEAN you
should.



Additional Applications

Speech recognition
Summarization
Text style-transfer
Paraphrasing

Parsing

‘_ g Emily M. Bender

0 @emilymbender

Dear ML and #NLProc researchers: Just
because you can cast something as a
seqZseq problem DOES NOT MEAN you
should.



Additional Applications

Speech recognition
Summarization
Text style-transfer
Paraphrasing
Parsing

Dialogue

‘_ g Emily M. Bender

0 @emilymbender

Dear ML and #NLProc researchers: Just
because you can cast something as a
seqZseq problem DOES NOT MEAN you
should.



Additional Applications

Speech recognition
Summarization
Text style-transfer
Paraphrasing
Parsing

Dialogue

‘_ g Emily M. Bender

0 @emilymbender

Dear ML and #NLProc researchers: Just
because you can cast something as a
seqZseq problem DOES NOT MEAN you
should.



The translation industry today



The translation industry today

“...the global language services and technology industry,
which, according to Slator was a 23.2 billion $ market in
2018 and projected to grow to 28.2 billion $ by 2022.”



The translation industry today

“...the global language services and technology industry,
which, according to Slator was a 23.2 billion $ market in
2018 and projected to grow to 28.2 billion $ by 2022.”

amazon



The translation industry today

“...the global language services and technology industry,
which, according to Slator was a 23.2 billion $ market in
2018 and projected to grow to 28.2 billion $ by 2022.”

. amazon




The translation industry today

“...the global language services and technology industry,
which, according to Slator was a 23.2 billion $ market in
2018 and projected to grow to 28.2 billion $ by 2022.”

. . amazon




The translation industry today

“...the global language services and technology industry,
which, according to Slator was a 23.2 billion $ market in
2018 and projected to grow to 28.2 billion $ by 2022.”

. . amazon

_
Google




The translation industry today

“...the global language services and technology industry,
which, according to Slator was a 23.2 billion $ market in
2018 and projected to grow to 28.2 billion $ by 2022.”

.. O svetnan aMazon

_
Google




The translation industry today

“...the global language services and technology industry,
which, according to Slator was a 23.2 billion $ market in
2018 and projected to grow to 28.2 billion $ by 2022.”

.. O svetnan aMazon

- W
Go gle Unbabel




The translation industry today

“...the global language services and technology industry,
which, according to Slator was a 23.2 billion $ market in
2018 and projected to grow to 28.2 billion $ by 2022.”

.. O SYSTRAN a\lll_a/;()n
_ N

GO g|e SDL Unbabel




Syllabus



IBM Model 1
IBM Model 2
IBM Model 3

PBMT

Word
Segmentation

Semi-
Supervised
Training

Data: Mining,

Cleaning,
Selection

Decoding

exercise 1

exercise 3

Introduction

Statistical
MT

Neural MT

Making it
Work

Advanced
Topics

exercise 2

Motivation

Background

Evaluation

MLPs

Attention

Transformers

Multilinguality

Speech
Translation

Linguistic
Knowledge

Unsupervised

Transfer
Learning

—]



Part I: Introduction



Part I: Introduction

A\

* The statistical E = alrglnax P(E | F)
E

MT framework



Part I: Introduction

e The statistical
MT framework

* N-gram
language
models

A\

E = argmax P(F | F)
E

P(|E| = 3, e ="she", e ="went", e,="home") =
P(e ="she”)
*P(e,="went” | e ="she”)
*P(e,="home” | e ="she”, e ="went’)

*P(e ="</s>" | e ="she”, e ="went’, e, ="home”)



Part I: Introduction

e The statistical
MT framework

* N-gram
language
models

e Evaluation

e BLEU

e Human

A\

E = argmax P(E | F)
1)

P([E| = 3, e,="she", e,="went", e,="home") =
P(e ="she”)
*P(e,="went” | e ="she”)
*P(e,="home” | e ="she”, e ="went’)

*P(e ="</s>" | e ="she", e, ="went’, e ="home")
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IBM models

The EM algorithm

Phrase-based
translation

Decoding and
beam-search

natuerlich| | hat spass am| | spiel
of course| |john fun with the| |game
EM algorithm (iteration: 36)
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o ®
. e SO OO0
e |ntroduction to neural networks S
e QOO O® O O
e Optimization o

Input layer

xentropy_mean

e Recurrent Neural Networks

 RNN language models ”fiiif

» Encoder-decoder models %/ —

e Attention (is all you need?) @@@@@ﬁgﬁj &W’ﬂ

the cat sat on the mat </s>
Bi-Directional Encoder Attention-based Decoder
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BPE

 \Word Segmentation lowest</ws —> lowest</w>’
: : L english german

e Semi-supervised training (real-mono) —~ (machine)

e Respect the data! german english

i g
(real-parallel+machine) (real-parallel+real-mono)

 Mining for data

e Data selection

s(Y, X) = log(P(Y|X))/lp(Y) + cp(X;Y)
5+ Y]~
5+ 1)

|X| v

 Decoding tricks cp(X;Y) = fx Y _log(min(}_pi,;,1.0)

e Data cleaning

Ip(Y) =
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Pretraining and Transfer
Learning
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Speech Translation
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Multilingual NMT

Pretraining and Transfer
Learning

Unsupervised MT
Speech Translation

Integrating Linguistic
Knowledge

| ENGLISH ®
The stratosphere extends from about ‘
10km to about 50km in altitude.
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Uber mehrere Jahre hatte niemand in dem Haus gelebt .

over several years , ho one had lived in the house .
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Neural Machine Translation and Sequence-to-sequence Models:
A Tutorial

iraham Neubig
Language Technologies Institute, Carnegie Mellon University

1 Introduction

This tutorial introduces a new and powerful set of techniques variously called “neural machine

fon” or “neural seq qQ models”. These techniques have been used in
a number of tasks regarding the handling of human language, and can be a powerful tool
in the toolbox of anyone who wants to model sequential data of some sort. The tutorial
assumes that the reader knows the basics of math and programming, but does not assume
any particular experience with neural networks or natural language processing. It attempts to
explain the intuition behind the various methods covered, then delves into them with enough
mathematical detail to understand them concretely, and culiminates with a suggestion for an
implementation exercise, where readers can test that they understood the content in practice.

1.1 Background

Before getting into the details, it might be worth describing each of the terms that appear in
the title “Neural Machine Translation and Sequence-to-sequence Models”. Machine trans-
lation is the technology used to translate between human language. Think of the universal
translation device showing up in sci-fi movies to allow you to communicate effortlessly with
those that speak a different language, or any of the plethora of online translation web sites
that you can use to assimilate content that is not in your native language. This ability to re-
move language barriers, needless to say, has the potential to be very useful, and thus machine
translation technology has been researched from shortly after the advent of digital computing

We call the language input to the machine translation system the source language, and
call the output language the target language. Thus, machine translation can be described
as the task of converting a sequence of words in the source, and converting into a sequence of
waords in the target The goal of the machine translation nractitioner is to come un with an
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Machine translation is hard

Machine translation is useful and important
A lot has changed in the recent years...

* We have a lot to cover

Your feedback is important

Looking forward to this semester, stay safe!
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