

89688: Statistical Machine Translation

Lecture 2: Evaluation

March 2020

Roee Aharoni Computer Science Department Bar Ilan University

Based in part on slides from Edinburgh University's MT class

"More has been written about machine translation evaluation than about machine translation itself."

"More has been written about machine translation evaluation than about machine translation itself."

"More has been written about machine translation evaluation than about machine translation itself."

Yorick Wilks

Why evaluate?

Why evaluate?

Rank competing systems

Ave.	Ave. z	System
90.3	0.347	Facebook-FAIR
93.0	0.311	Microsoft-WMT19-sent-doc
92.6	0.296	Microsoft-WMT19-doc-level
90.3	0.240	HUMAN
87.6	0.214	MSRA-MADL
88.7	0.213	UCAM
89.6	0.208	NEU
87.5	0.189	MLLP-UPV
87.5	0.130	eTranslation
86.8	0.119	dfki-nmt
84.2	0.094	online-B
86.6	0.094	Microsoft-WMT19-sent-level
87.3	0.081	JHU
84.4	0.077	Helsinki-NLP

Why evaluate?

Rank competing systems

NAACL 2006 WORKSHOP ON STATISTICAL MACHINE TRANSLATION

June 8 and 9, 2006

Ave.	Ave. z	System
90.3	0.347	Facebook-FAIR
93.0	0.311	Microsoft-WMT19-sent-doc
92.6	0.296	Microsoft-WMT19-doc-level
90.3	0.240	HUMAN
87.6	0.214	MSRA-MADL
88.7	0.213	UCAM
89.6	0.208	NEU
87.5	0.189	MLLP-UPV
87.5	0.130	eTranslation
86.8	0.119	dfki-nmt
84.2	0.094	online-B
86.6	0.094	Microsoft-WMT19-sent-level
87.3	0.081	JHU
84.4	0.077	Helsinki-NLP

Why evaluate?

- Rank competing systems
- Make incremental improvements

NAACL 2006 WORKSHOP ON STATISTICAL MACHINE TRANSLATION

June 8 and 9, 2006

Ave.	Ave. z	System
90.3	0.347	Facebook-FAIR
93.0	0.311	Microsoft-WMT19-sent-doc
92.6	0.296	Microsoft-WMT19-doc-level
90.3	0.240	HUMAN
87.6	0.214	MSRA-MADL
88.7	0.213	UCAM
89.6	0.208	NEU
87.5	0.189	MLLP-UPV
87.5	0.130	eTranslation
86.8	0.119	dfki-nmt
84.2	0.094	online-B
86.6	0.094	Microsoft-WMT19-sent-level
87.3	0.081	JHU
84.4	0.077	Helsinki-NLP

Why evaluate?

- Rank competing systems
- Make incremental improvements
 - More data?

NAACL 2006 WORKSHOP ON STATISTICAL MACHINE TRANSLATION

June 8 and 9, 2006

Ave.	Ave. z	System
90.3	0.347	Facebook-FAIR
93.0	0.311	Microsoft-WMT19-sent-doc
92.6	0.296	Microsoft-WMT19-doc-level
90.3	0.240	HUMAN
87.6	0.214	MSRA-MADL
88.7	0.213	UCAM
89.6	0.208	NEU
87.5	0.189	MLLP-UPV
87.5	0.130	eTranslation
86.8	0.119	dfki-nmt
84.2	0.094	online-B
86.6	0.094	Microsoft-WMT19-sent-level
87.3	0.081	JHU
84.4	0.077	Helsinki-NLP

Why evaluate?

- Rank competing systems
- Make incremental improvements
 - More data?
 - Different preprocessing?

NAACL 2006 WORKSHOP ON STATISTICAL MACHINE TRANSLATION

June 8 and 9, 2006

Ave.	Ave. z	System
90.3	0.347	Facebook-FAIR
93.0	0.311	Microsoft-WMT19-sent-doc
92.6	0.296	Microsoft-WMT19-doc-level
90.3	0.240	HUMAN
87.6	0.214	MSRA-MADL
88.7	0.213	UCAM
89.6	0.208	NEU
87.5	0.189	MLLP-UPV
87.5	0.130	eTranslation
86.8	0.119	dfki-nmt
84.2	0.094	online-B
86.6	0.094	Microsoft-WMT19-sent-level
87.3	0.081	JHU
84.4	0.077	Helsinki-NLP

Why evaluate?

- Rank competing systems
- Make incremental improvements
 - More data?
 - Different preprocessing?
 - Different hyperparameters?

NAACL 2006 WORKSHOP ON STATISTICAL MACHINE TRANSLATION

June 8 and 9, 2006

Ave.	Ave. z	System
90.3	0.347	Facebook-FAIR
93.0	0.311	Microsoft-WMT19-sent-doc
92.6	0.296	Microsoft-WMT19-doc-level
90.3	0.240	HUMAN
87.6	0.214	MSRA-MADL
88.7	0.213	UCAM
89.6	0.208	NEU
87.5	0.189	MLLP-UPV
87.5	0.130	eTranslation
86.8	0.119	dfki-nmt
84.2	0.094	online-B
86.6	0.094	Microsoft-WMT19-sent-level
87.3	0.081	JHU
84.4	0.077	Helsinki-NLP

Why evaluate?

- Rank competing systems
- Make incremental improvements
 - More data?
 - Different preprocessing?
 - Different hyperparameters?
- Evaluate new ideas

NAACL 2006 WORKSHOP ON STATISTICAL MACHINE TRANSLATION

June 8 and 9, 2006

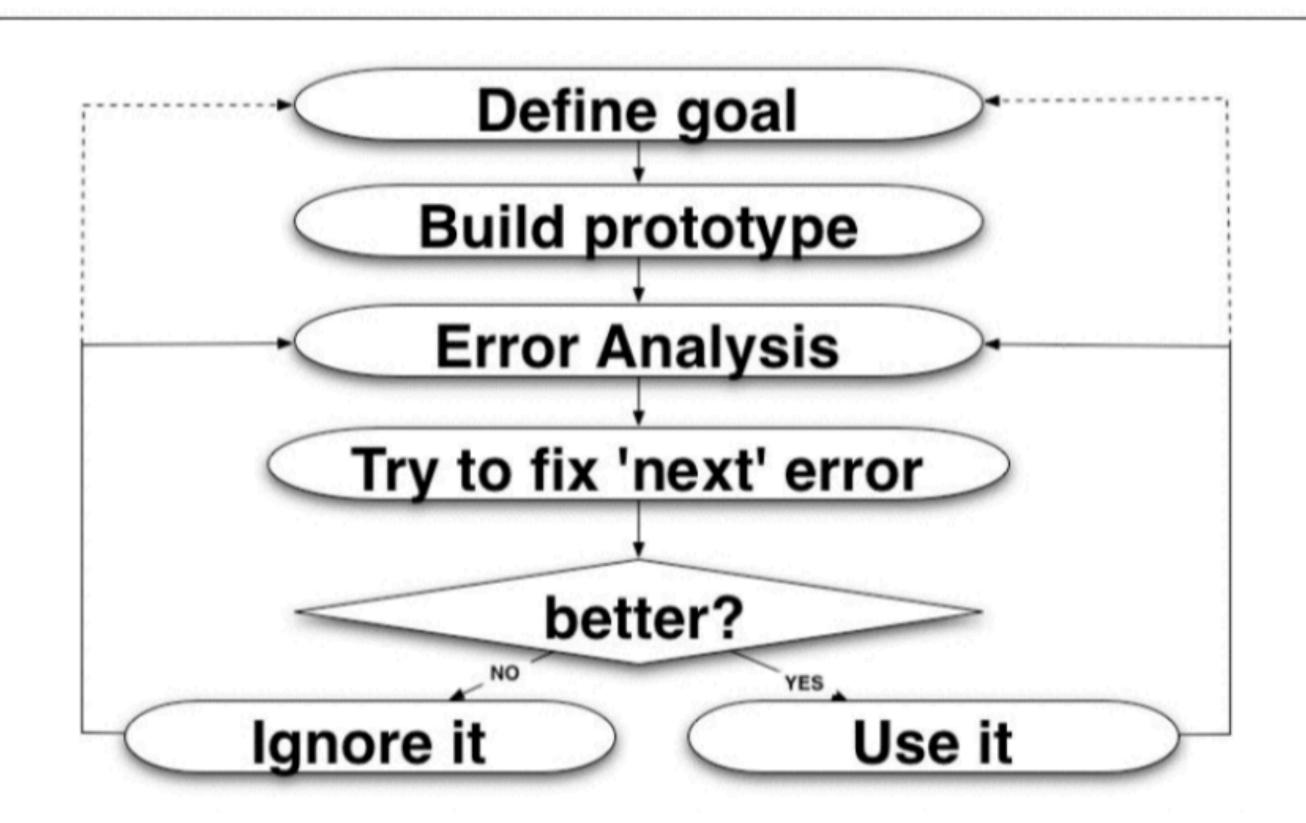
Ave.	Ave. z	System
90.3	0.347	Facebook-FAIR
93.0	0.311	Microsoft-WMT19-sent-doc
92.6	0.296	Microsoft-WMT19-doc-level
90.3	0.240	HUMAN
87.6	0.214	MSRA-MADL
88.7	0.213	UCAM
89.6	0.208	NEU
87.5	0.189	MLLP-UPV
87.5	0.130	eTranslation
86.8	0.119	dfki-nmt
84.2	0.094	online-B
86.6	0.094	Microsoft-WMT19-sent-level
87.3	0.081	JHU
84.4	0.077	Helsinki-NLP

Why evaluate?

Why evaluate?

Development Cycle for MT Research

Evaluation enables progress



What is a good translation?

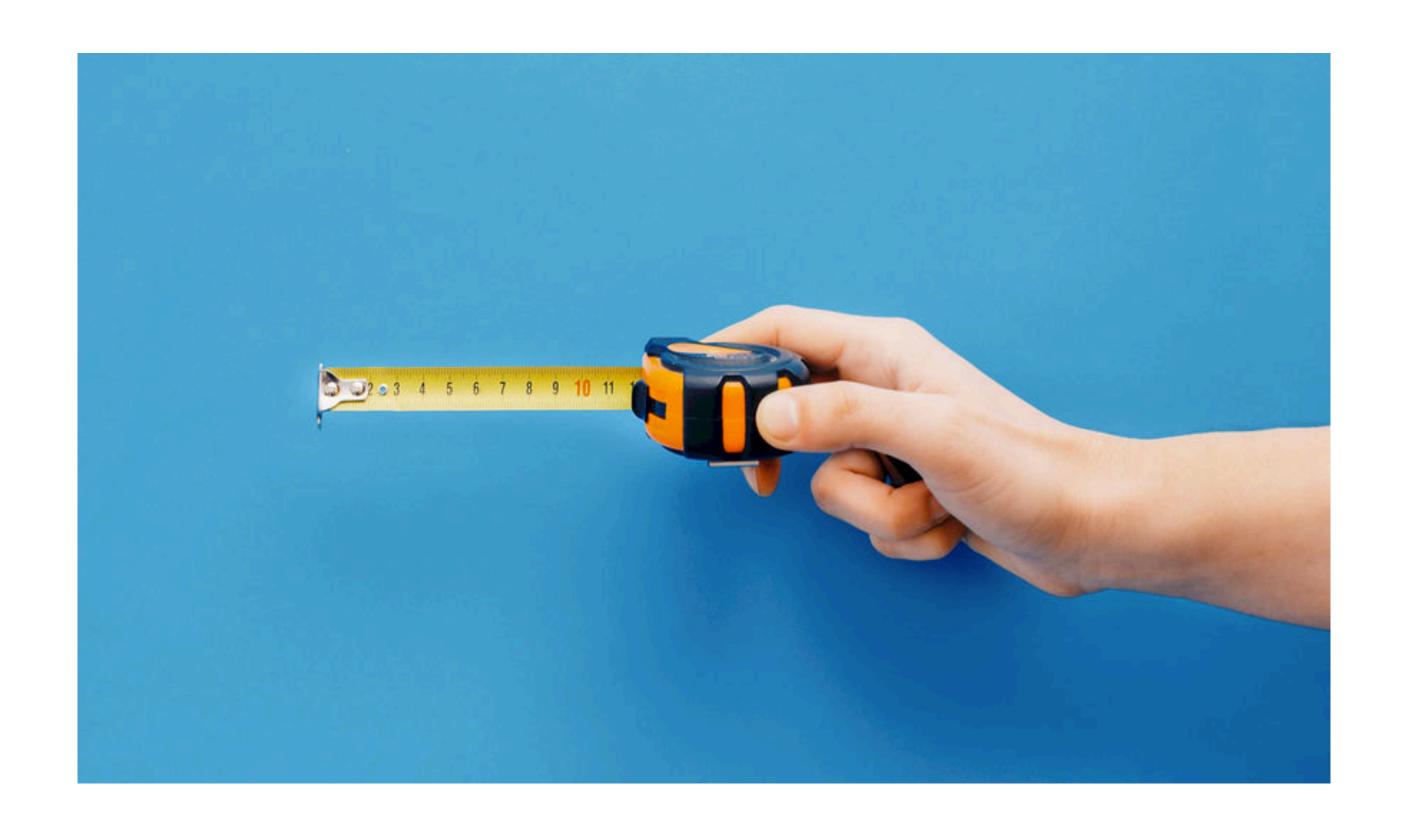
Transitions from one language to another

- Transitions from one language to another
- Preserves the meaning

- Transitions from one language to another
- Preserves the meaning
- Fluent?

- Transitions from one language to another
- Preserves the meaning
- Fluent?
- Preserves style?

- Transitions from one language to another
- Preserves the meaning
- Fluent?
- Preserves style?
- What else?



How can we measure this?

Human Automatic

	Human	Automatic
Accurate	Yes	Sometimes

	Human	Automatic
Accurate	Yes	Sometimes
Speed	Slow	Fast

	Human	Automatic
Accurate	Yes	Sometimes
Speed	Slow	Fast
Price	Expensive	Cheap

	Human	Automatic
Accurate	Yes	Sometimes
Speed	Slow	Fast
Price	Expensive	Cheap
Subjectivity	Subjective	Objective

	Human	Automatic
Accurate	Yes	Sometimes
Speed	Slow	Fast
Price	Expensive	Cheap
Subjectivity	Subjective	Objective
Reproducible	No	Yes

Human Evaluation Methods

The Likert Scale

The Likert Scale

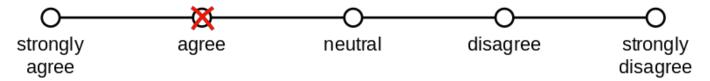
Rensis Likert

The Likert Scale

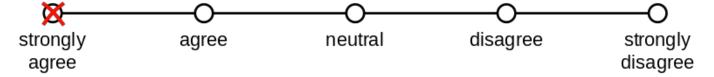
Rensis Likert

Website User Survey

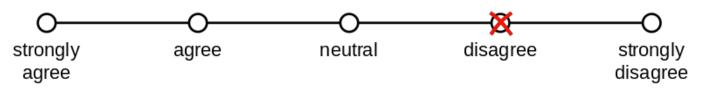
1. The website has a user friendly interface.



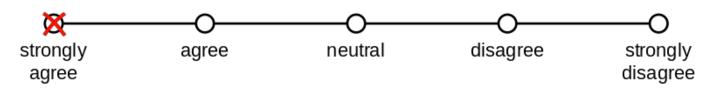
2. The website is easy to navigate.

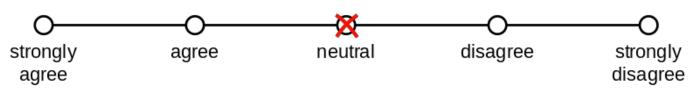


3. The website's pages generally have good images.



4. The website allows users to upload pictures easily.





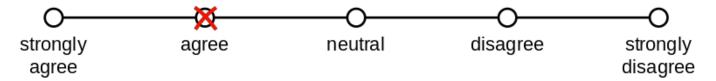
The Likert Scale

• WMT 06' - WMT 07'

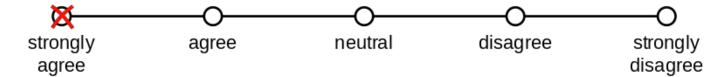
Rensis Likert

Website User Survey

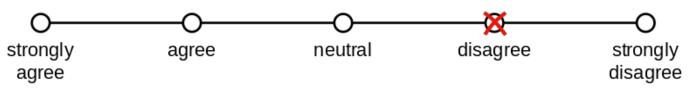
1. The website has a user friendly interface.



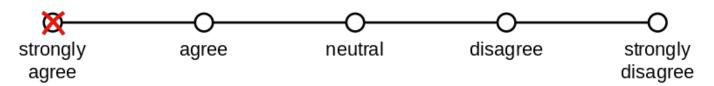
2. The website is easy to navigate.

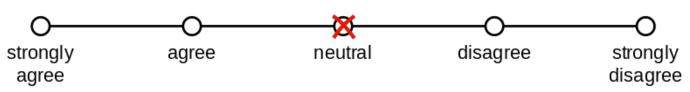


3. The website's pages generally have good images.



4. The website allows users to upload pictures easily.





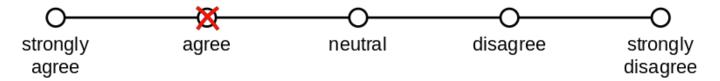
The Likert Scale

- WMT 06' WMT 07'
- Rank based on:

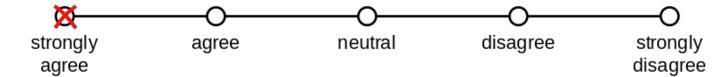
Rensis Likert

Website User Survey

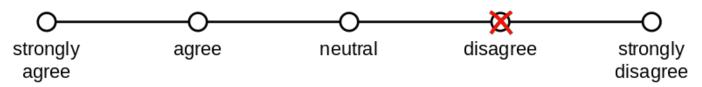
1. The website has a user friendly interface.



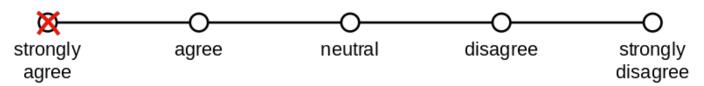
2. The website is easy to navigate.

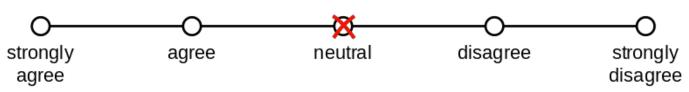


3. The website's pages generally have good images.



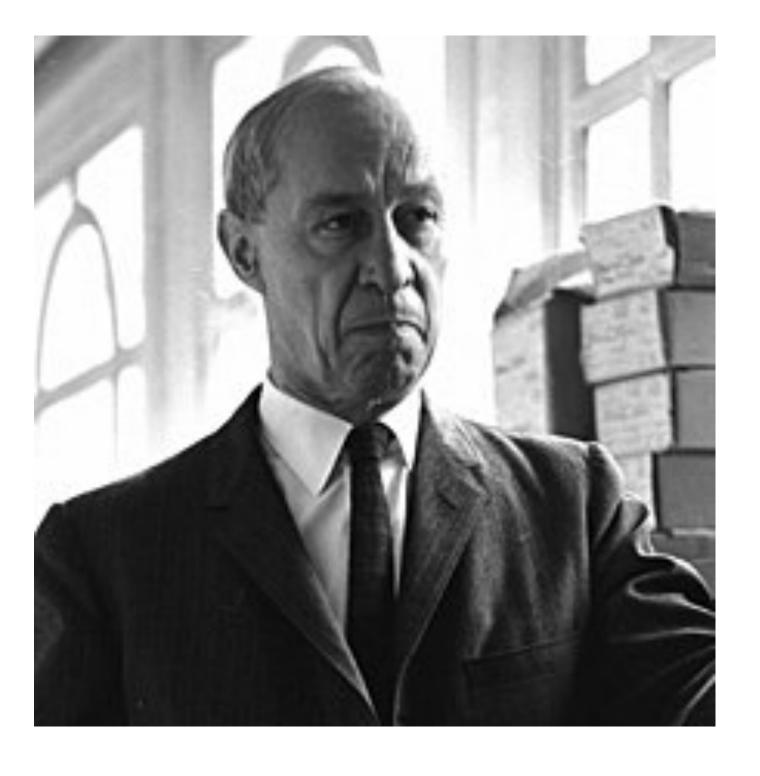
4. The website allows users to upload pictures easily.





The Likert Scale

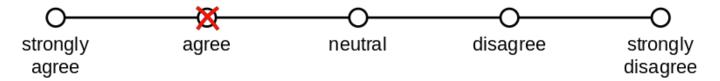
- WMT 06' WMT 07'
- Rank based on:
 - Adequacy ("how much of the meaning expressed in the reference is also expressed in a hypothesis"?)



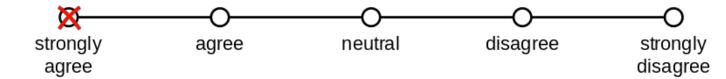
Rensis Likert

Website User Survey

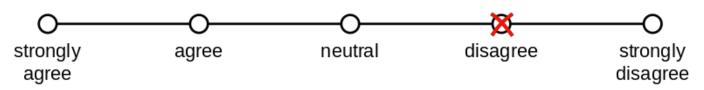
1. The website has a user friendly interface.



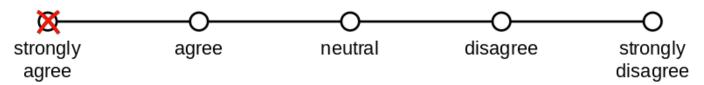
2. The website is easy to navigate.

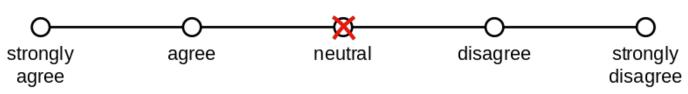


3. The website's pages generally have good images.



4. The website allows users to upload pictures easily.





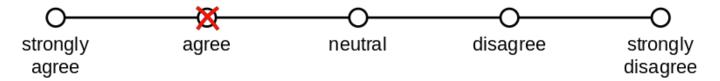
The Likert Scale

- WMT 06' WMT 07'
- Rank based on:
 - Adequacy ("how much of the meaning expressed in the reference is also expressed in a hypothesis"?)
 - **Fluency** ("how fluent the translation is?")

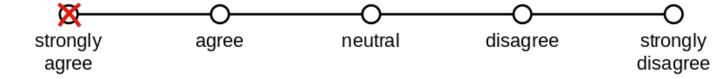
Rensis Likert

Website User Survey

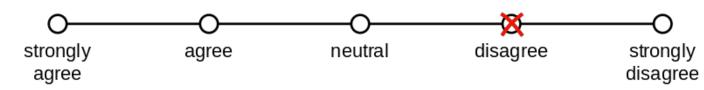
1. The website has a user friendly interface.



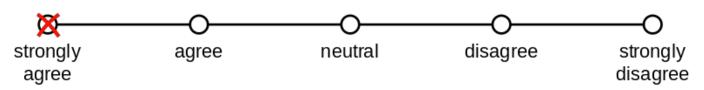
2. The website is easy to navigate.

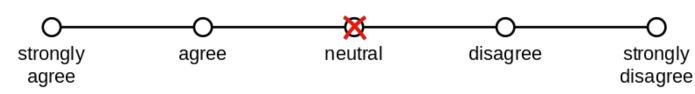


3. The website's pages generally have good images.



4. The website allows users to upload pictures easily.





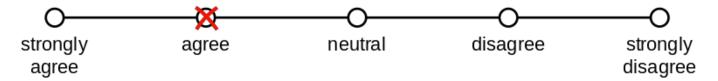
The Likert Scale

- WMT 06' WMT 07'
- Rank based on:
 - Adequacy ("how much of the meaning expressed in the reference is also expressed in a hypothesis"?)
 - **Fluency** ("how fluent the translation is?")
- Pros? Cons?

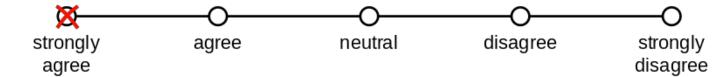
Rensis Likert

Website User Survey

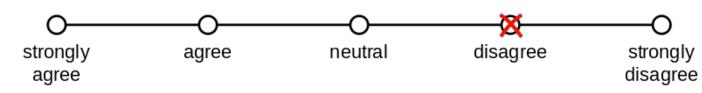
1. The website has a user friendly interface.



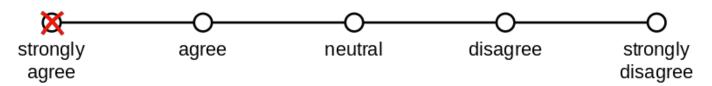
2. The website is easy to navigate.

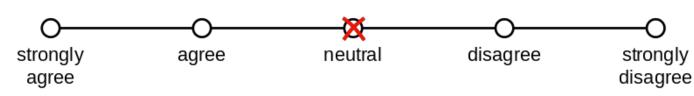


3. The website's pages generally have good images.



4. The website allows users to upload pictures easily.





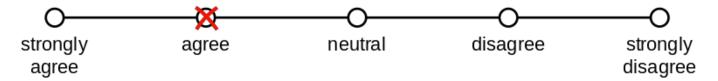
The Likert Scale

- WMT 06' WMT 07'
- Rank based on:
 - Adequacy ("how much of the meaning expressed in the reference is also expressed in a hypothesis"?)
 - **Fluency** ("how fluent the translation is?")
- Pros? Cons?

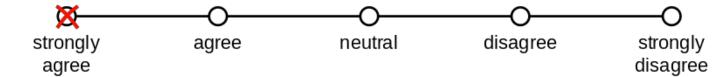
Rensis Likert

Website User Survey

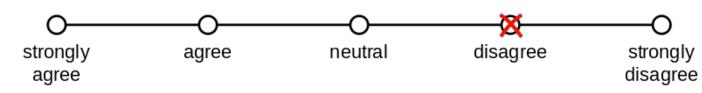
1. The website has a user friendly interface.



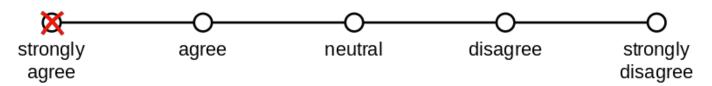
2. The website is easy to navigate.

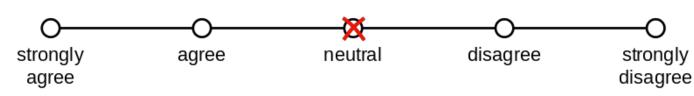


3. The website's pages generally have good images.



4. The website allows users to upload pictures easily.





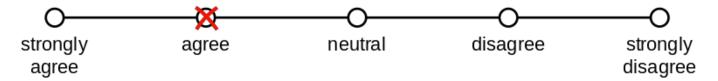
The Likert Scale

- WMT 06' WMT 07'
- Rank based on:
 - Adequacy ("how much of the meaning expressed in the reference is also expressed in a hypothesis"?)
 - **Fluency** ("how fluent the translation is?")
- Pros? Cons?

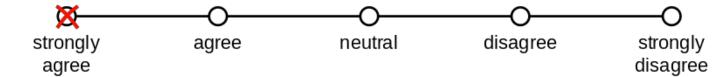
Rensis Likert

Website User Survey

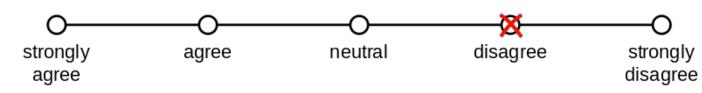
1. The website has a user friendly interface.



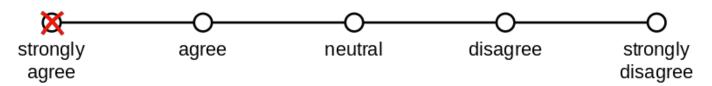
2. The website is easy to navigate.

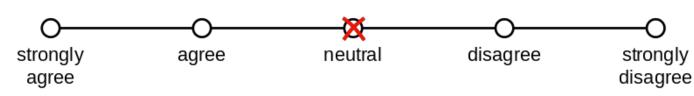


3. The website's pages generally have good images.



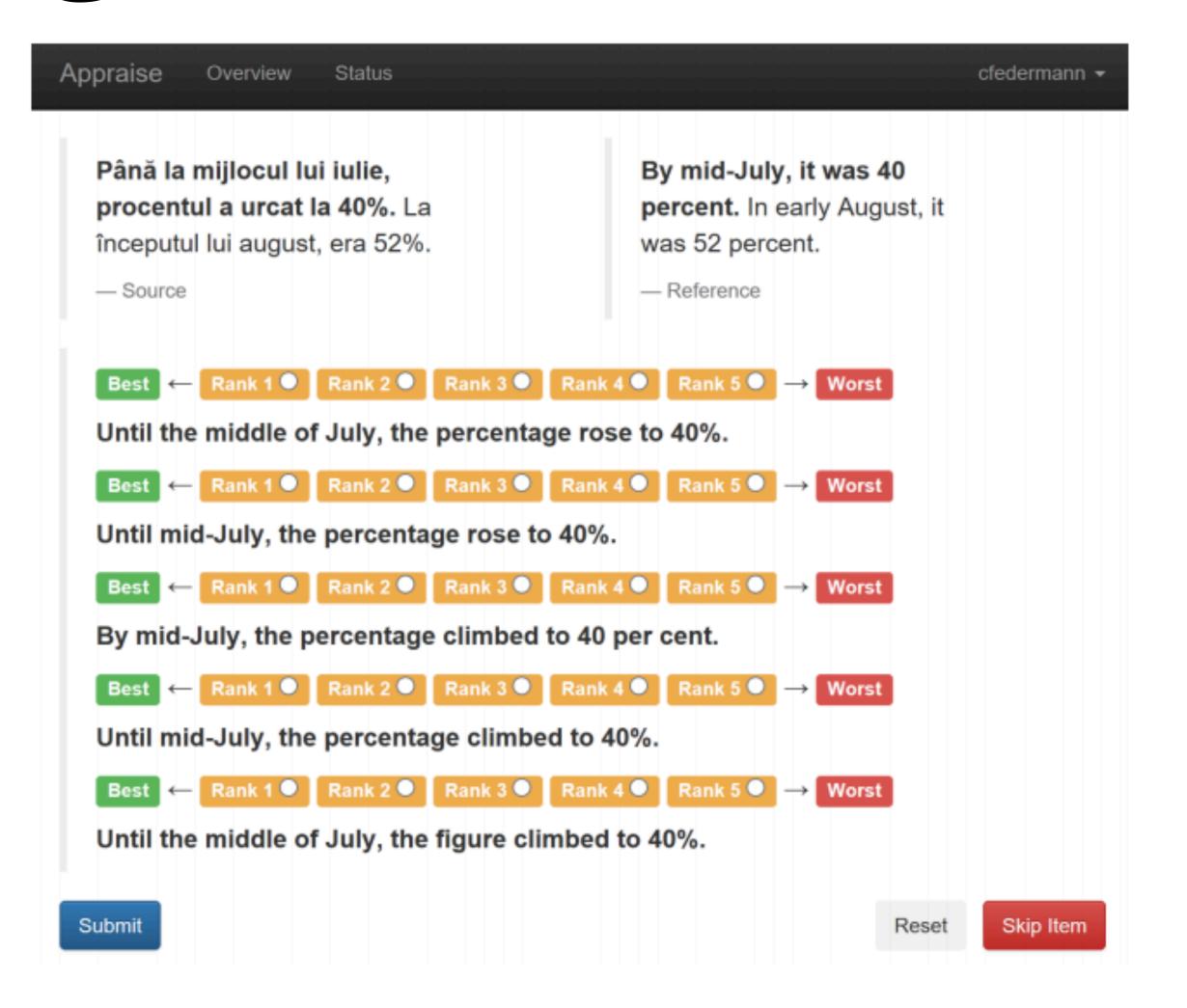
4. The website allows users to upload pictures easily.



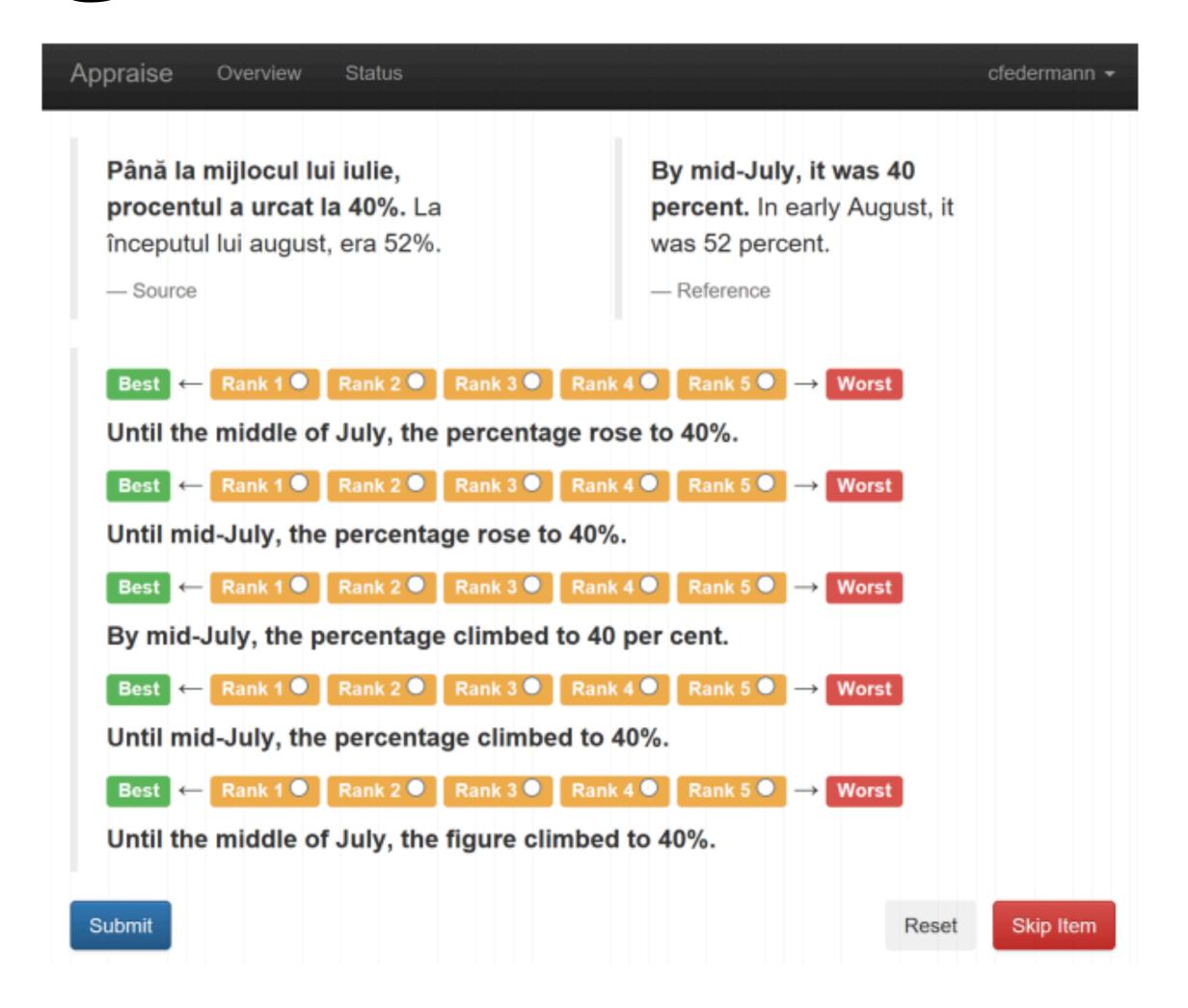


WMT 07'-WMT 16'

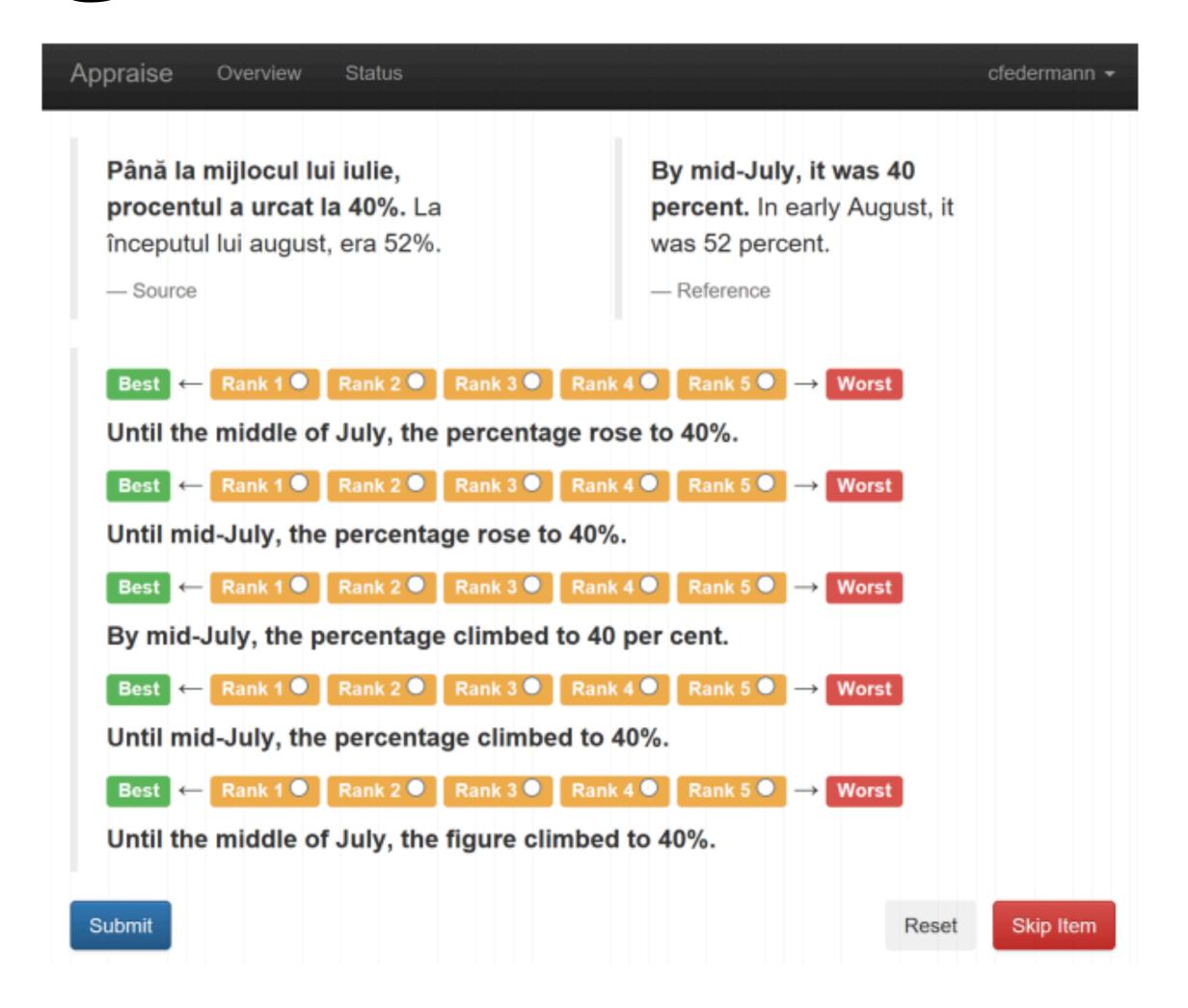
- WMT 07'-WMT 16'
- Each rater ranks 5 systems



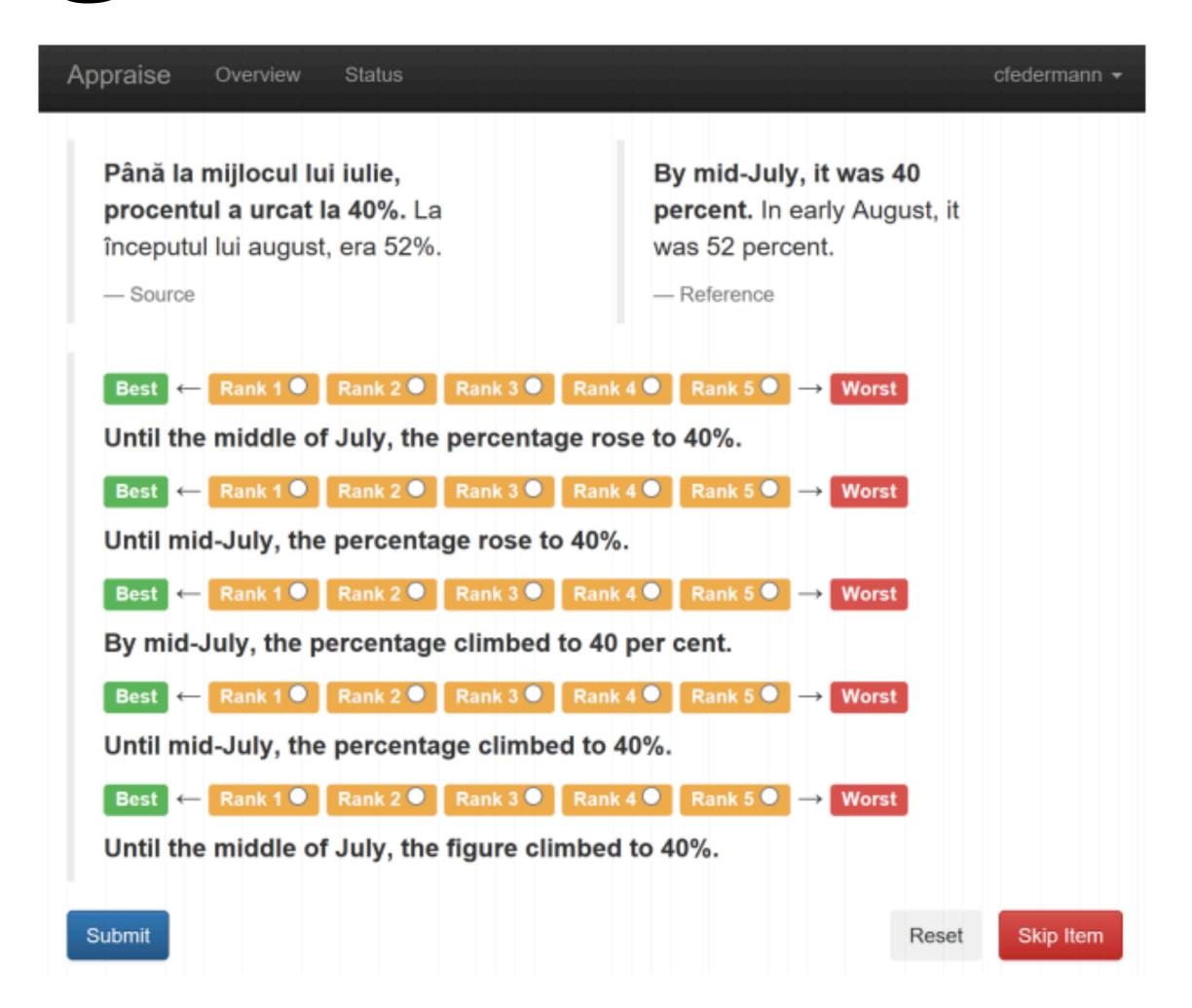
- WMT 07'-WMT 16'
- Each rater ranks 5 systems
- Produces pairwise rankings



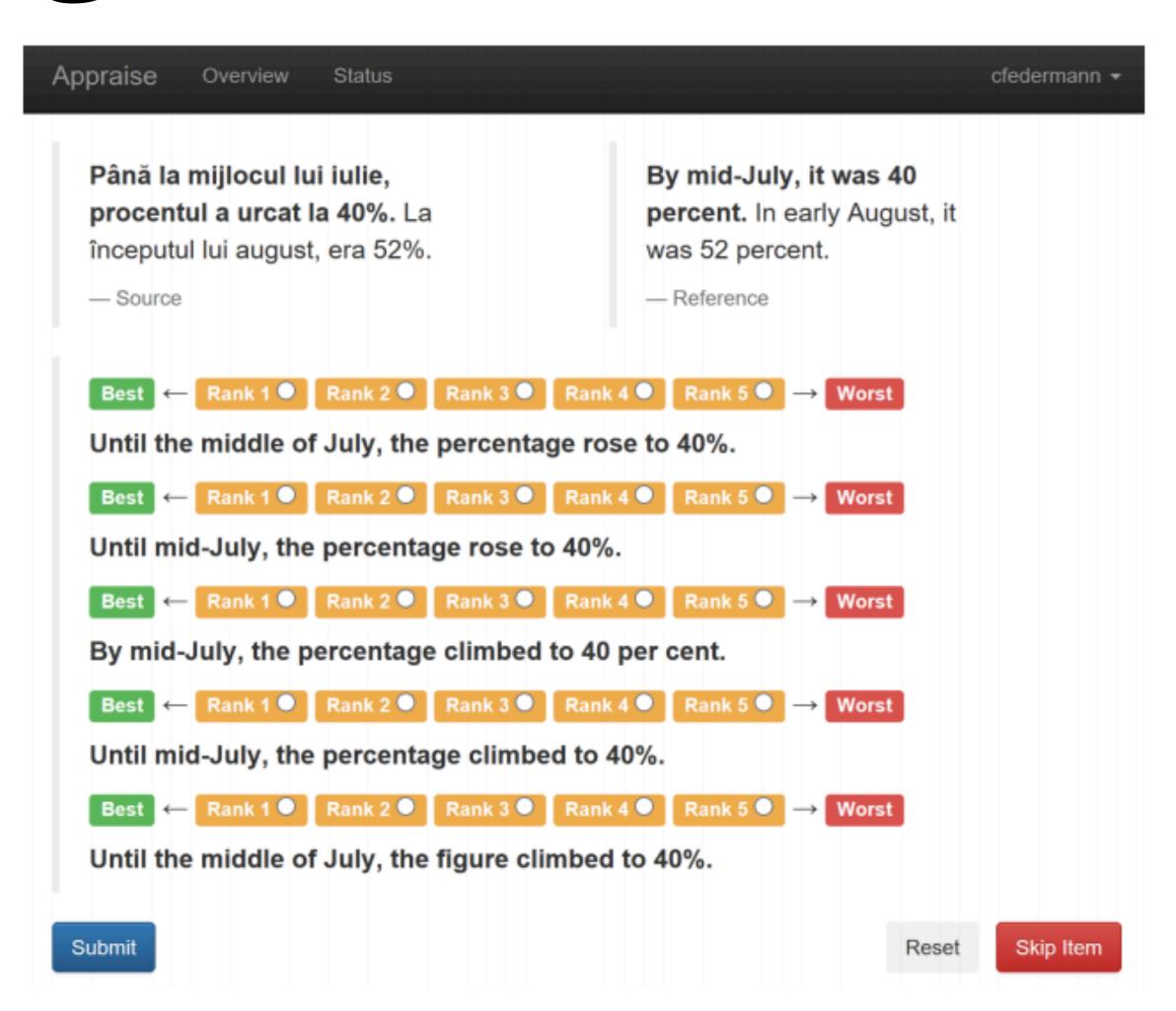
- WMT 07'-WMT 16'
- Each rater ranks 5 systems
- Produces pairwise rankings
- Feed to the TrueSkill (or other) algorithm to obtain final rankings



- WMT 07'-WMT 16'
- Each rater ranks 5 systems
- Produces pairwise rankings
- Feed to the TrueSkill (or other) algorithm to obtain final rankings
- Pros? Cons?



- WMT 07'-WMT 16'
- Each rater ranks 5 systems
- Produces pairwise rankings
- Feed to the TrueSkill (or other) algorithm to obtain final rankings
- Pros? Cons?



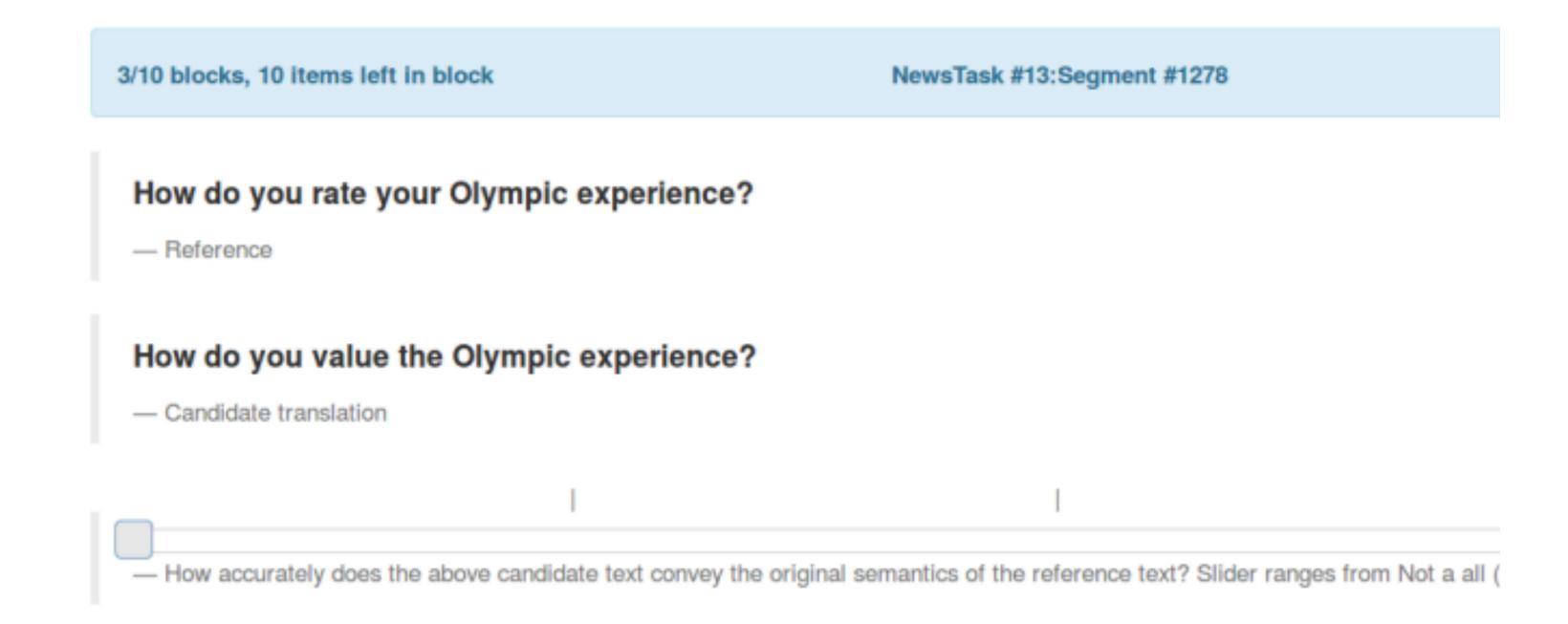
Direct Assessment: Monolingual

• WMT 16'-WMT 19'

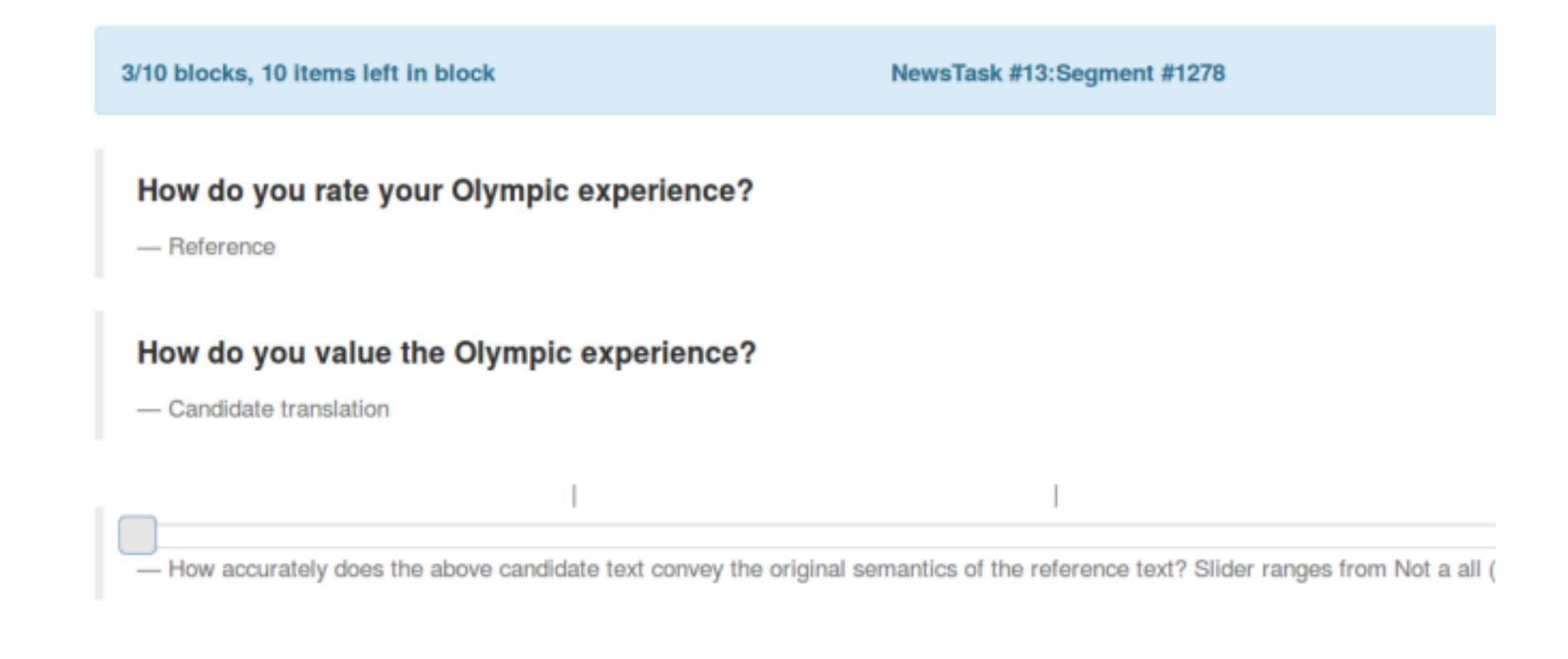
Direct Assessment: Monolingual

WMT 16'-WMT 19'

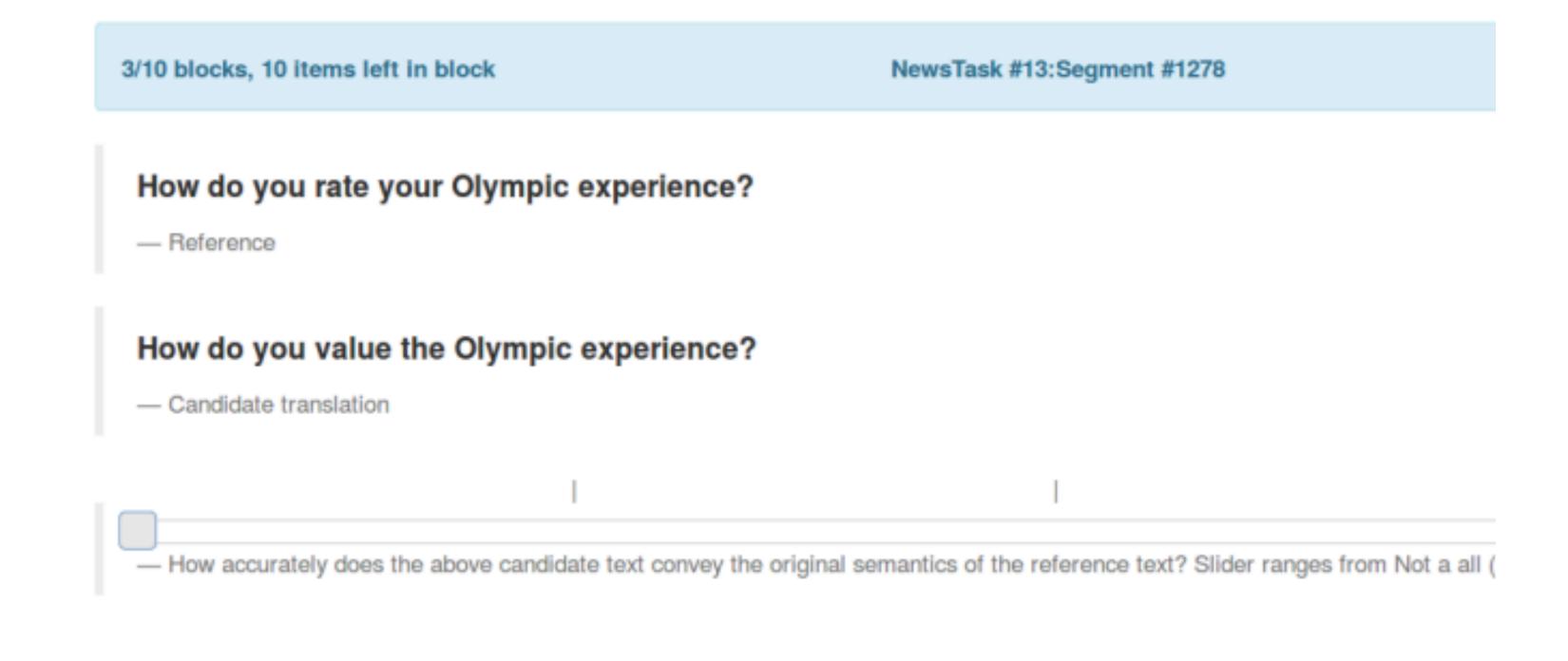
- WMT 16'-WMT 19'
- Scores are standardised according to each individual worker's overall mean and standard deviation



- WMT 16'-WMT 19'
- Scores are standardised according to each individual worker's overall mean and standard deviation
- the overall score of a system is the mean (standardised) score of its translations



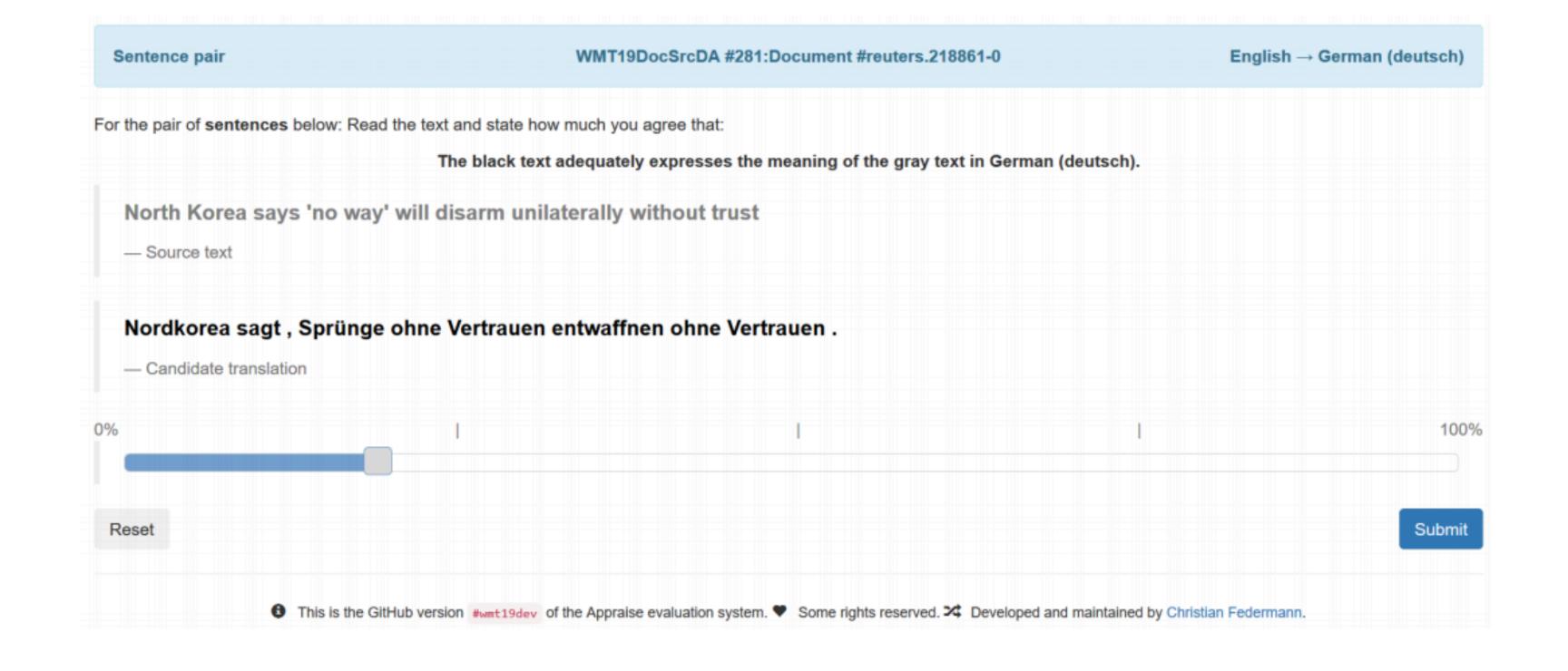
- WMT 16'-WMT 19'
- Scores are standardised according to each individual worker's overall mean and standard deviation
- the overall score of a system is the mean (standardised) score of its translations
- Adequacy is main, fluency used to break ties



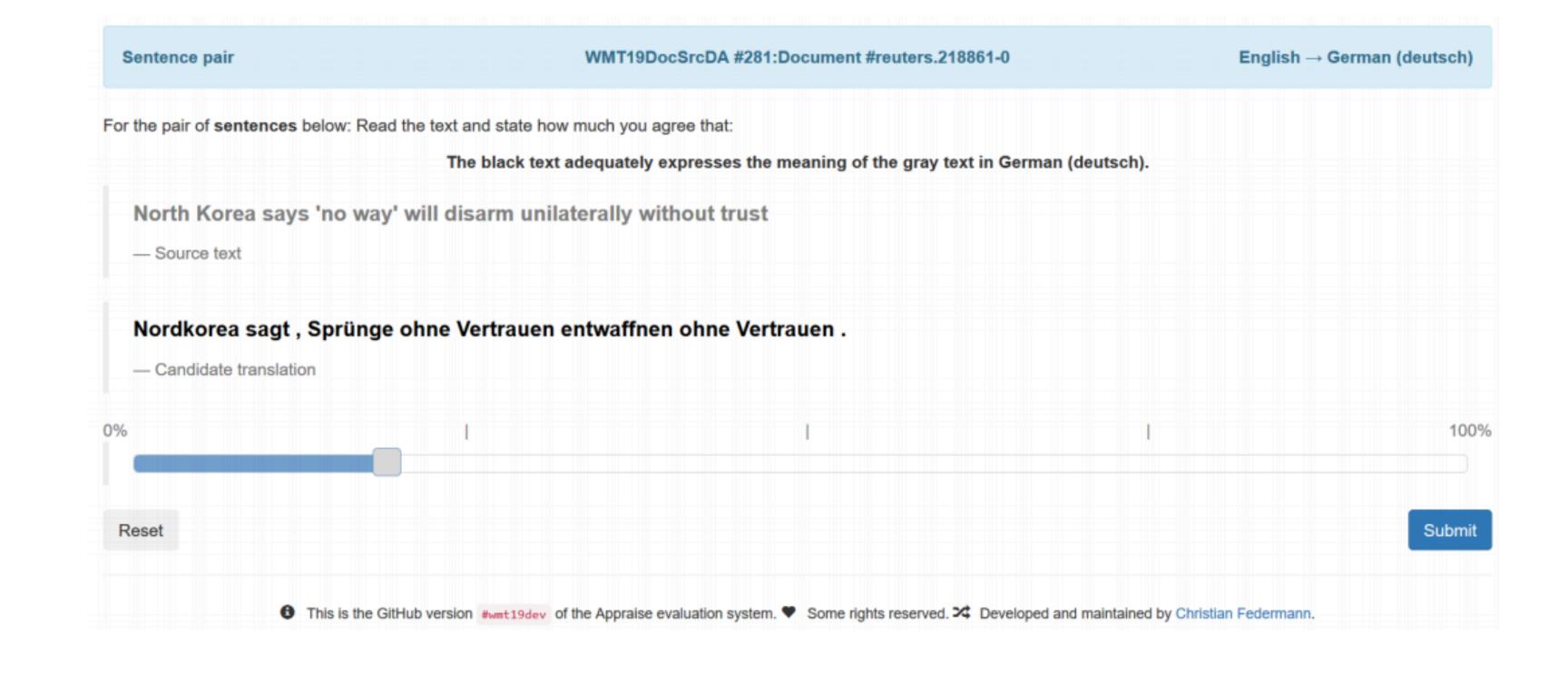
Direct Assessment: Bilingual

WMT 18'-WMT 19'

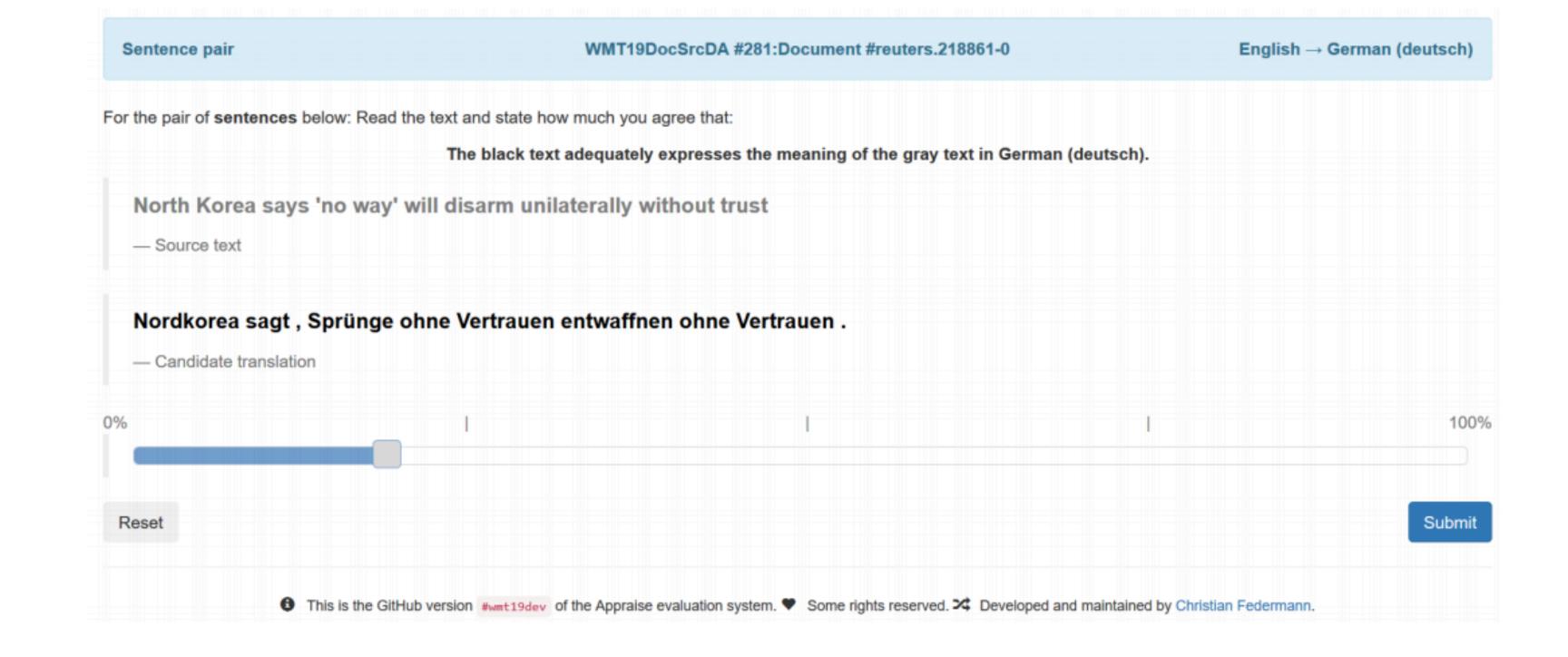
- WMT 18'-WMT 19'
- Use a source sentence instead of a reference sentence ("source-based")



- WMT 18'-WMT 19'
- Use a source sentence instead of a reference sentence ("source-based")
- Main motivation: enables to measure "human performance"



- WMT 18'-WMT 19'
- Use a source sentence instead of a reference sentence ("source-based")
- Main motivation: enables to measure "human performance"
- Are we there yet?



Human Parity in MT

Human Parity in MT

 Several papers previously claimed some some sort of human-parity

Human Parity in MT

 Several papers previously claimed some some sort of human-parity Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi yonghui,schuster,zhifengc,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

Human Parity in MT

 Several papers previously claimed some some sort of human-parity

Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi yonghui,schuster,zhifengc,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

Achieving Human Parity on Automatic Chinese to English News Translation

Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian Luo, Arul Menezes, Tao Qin, Frank Seide, Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia, Dongdong Zhang, Zhirui Zhang, and Ming Zhou

Microsoft AI & Research

Human Parity in MT

- Several papers previously claimed some some sort of human-parity
- WMT 18' also presented such result for English -Czech

Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi yonghui,schuster,zhifengc,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

Achieving Human Parity on Automatic Chinese to English News Translation

Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian Luo, Arul Menezes, Tao Qin, Frank Seide, Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia, Dongdong Zhang, Zhirui Zhang, and Ming Zhou

	Ave. %	Ave. z	System
1	84.4	0.667	CUNI-TRANSFORMER
2	79.8	0.521	UEDIN
	78.6	0.483	NEWSTEST2018-REF
4	68.1	0.128	ONLINE-B
5	59.4	-0.178	ONLINE-A
6	54.1	-0.354	ONLINE-G

Human Parity in MT

- Several papers previously claimed some some sort of human-parity
- WMT 18' also presented such result for English -Czech
- Possible caveats:

Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi yonghui,schuster,zhifengc,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

Achieving Human Parity on Automatic Chinese to English News Translation

Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian Luo, Arul Menezes, Tao Qin, Frank Seide, Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia, Dongdong Zhang, Zhirui Zhang, and Ming Zhou

	Ave. %	Ave. z	System
1	84.4	0.667	CUNI-TRANSFORMER
2	79.8	0.521	UEDIN
	78.6	0.483	NEWSTEST2018-REF
4	68.1	0.128	ONLINE-B
5	59.4	-0.178	ONLINE-A
6	54.1	-0.354	ONLINE-G

Human Parity in MT

- Several papers previously claimed some some sort of human-parity
- WMT 18' also presented such result for English -Czech
- Possible caveats:
 - Bad references

Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi yonghui,schuster,zhifengc,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

Achieving Human Parity on Automatic Chinese to English News Translation

Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian Luo, Arul Menezes, Tao Qin, Frank Seide, Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia, Dongdong Zhang, Zhirui Zhang, and Ming Zhou

1 84.4 0.667 CUNI-TRANSFORME	
1 04.4 0.007 COMPTRANSPORME	R
2 79.8 0.521 UEDIN	
78.6 0.483 NEWSTEST2018-REF	
4 68.1 0.128 ONLINE-B	
5 59.4 -0.178 ONLINE-A	
6 54.1 -0.354 ONLINE-G	

Human Parity in MT

- Several papers previously claimed some some sort of human-parity
- WMT 18' also presented such result for English -Czech
- Possible caveats:
 - Bad references
 - Incompetent raters

Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi yonghui,schuster,zhifengc,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

Achieving Human Parity on Automatic Chinese to English News Translation

Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian Luo, Arul Menezes, Tao Qin, Frank Seide, Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia, Dongdong Zhang, Zhirui Zhang, and Ming Zhou

	Ave. %	Ave. z	System
1	84.4	0.667	CUNI-TRANSFORMER
2	79.8	0.521	UEDIN
	78.6	0.483	NEWSTEST2018-REF
4	68.1	0.128	ONLINE-B
5	59.4	-0.178	ONLINE-A
6	54.1	-0.354	ONLINE-G
	·		

Human Parity in MT

- Several papers previously claimed some some sort of human-parity
- WMT 18' also presented such result for English -Czech
- Possible caveats:
 - Bad references
 - Incompetent raters
 - Small sample size

Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi yonghui, schuster, zhifengc, qvl, mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

Achieving Human Parity on Automatic Chinese to English News Translation

Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian Luo, Arul Menezes, Tao Qin, Frank Seide, Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia, Dongdong Zhang, Zhirui Zhang, and Ming Zhou

1 84.4 0.667 CUNI-TRANSFORME	
1 04.4 0.007 COMPTRANSPORME	R
2 79.8 0.521 UEDIN	
78.6 0.483 NEWSTEST2018-REF	
4 68.1 0.128 ONLINE-B	
5 59.4 -0.178 ONLINE-A	
6 54.1 -0.354 ONLINE-G	

Human Parity in MT

- Several papers previously claimed some some sort of human-parity
- WMT 18' also presented such result for English -Czech
- Possible caveats:
 - Bad references
 - Incompetent raters
 - Small sample size
 - Sentence-level evaluation

Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi yonghui,schuster,zhifengc,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

Achieving Human Parity on Automatic Chinese to English News Translation

Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian Luo, Arul Menezes, Tao Qin, Frank Seide, Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia, Dongdong Zhang, Zhirui Zhang, and Ming Zhou

	Ave. %	Ave. z	System
1	84.4	0.667	CUNI-TRANSFORMER
2	79.8	0.521	UEDIN
	78.6	0.483	NEWSTEST2018-REF
4	68.1	0.128	ONLINE-B
5	59.4	-0.178	ONLINE-A
6	54.1	-0.354	ONLINE-G

Not so fast...

Not so fast...

 Several recent studies show how human parity was yet to be achieved:

Not so fast...

 Several recent studies show how human parity was yet to be achieved:

Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Machine Translation

Antonio Toral

Center for Language and Cognition University of Groningen The Netherlands

a.toral.ruiz@rug.nl

Sheila Castilho Ke Hu Andy Way
ADAPT Centre
Dublin City University
Ireland

firstname.secondname@adaptcentre.ie

Not so fast...

 Several recent studies show how human parity was yet to be achieved:

Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Machine Translation

Antonio Toral

Center for Language and Cognition University of Groningen The Netherlands

a.toral.ruiz@rug.nl

Sheila Castilho Ke Hu Andy Way
ADAPT Centre
Dublin City University
Ireland

firstname.secondname@adaptcentre.ie

Has Machine Translation Achieved Human Parity? A Case for Document-level Evaluation

Not so fast...

- Several recent studies show how human parity was yet to be achieved:
 - The "Super-Human" sentence-level systems are inferior to humans when evaluated in document-level

Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Machine Translation

Antonio Toral

Center for Language and Cognition University of Groningen The Netherlands

a.toral.ruiz@rug.nl

Sheila Castilho Ke Hu Andy Way
ADAPT Centre
Dublin City University

firstname.secondname@adaptcentre.ie

Ireland

Has Machine Translation Achieved Human Parity? A Case for Document-level Evaluation

Not so fast...

- Several recent studies show how human parity was yet to be achieved:
 - The "Super-Human" sentence-level systems are inferior to humans when evaluated in document-level
 - The translation direction when producing the references is crucial ("Translationese")

Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Machine Translation

Antonio Toral
Center for Language and Cognition
University of Groningen

a.toral.ruiz@rug.nl

The Netherlands

Sheila Castilho Ke Hu Andy Way
ADAPT Centre
Dublin City University
Ireland

firstname.secondname@adaptcentre.ie

Has Machine Translation Achieved Human Parity? A Case for Document-level Evaluation

Not so fast...

- Several recent studies show how human parity was yet to be achieved:
 - The "Super-Human" sentence-level systems are inferior to humans when evaluated in document-level
 - The translation direction when producing the references is crucial ("Translationese")
 - The proficiency of the raters is crucial

Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Machine Translation

Antonio Toral
Center for Language and Cognition
University of Groningen

a.toral.ruiz@rug.nl

The Netherlands

Sheila Castilho Ke Hu Andy Way
ADAPT Centre
Dublin City University
Ireland

firstname.secondname@adaptcentre.ie

Has Machine Translation Achieved Human Parity? A Case for Document-level Evaluation

But is there hope?

 WMT 19' included source-based sentence-level direct assessment with document context

- WMT 19' included source-based sentence-level direct assessment with document context
- For 3 out of 9 (De-En, En-De, En-Ru) language pairs, MT systems were tied or better than the reference translations

German→English

Ave.	Ave. z	System
81.6	0.146	Facebook-FAIR
81.5	0.136	RWTH-Aachen
79.0	0.136	MSRA-MADL
79.9	0.121	online-B
79.0	0.086	JHU
80.1	0.067	MLLP-UPV
79.0	0.066	dfki-nmt
78.0	0.066	UCAM
76.6	0.050	online-A
78.4	0.039	NEU
79.0	0.027	HUMAN
77.4	0.011	uedin
77.9	0.009	online-Y
74.8	0.006	TartuNLP-c
72.9	-0.051	online-G
71.8	-0.128	PROMT-NMT
69.7	-0.192	online-X

- WMT 19' included source-based sentence-level direct assessment with document context
- For 3 out of 9 (De-En, En-De, En-Ru) language pairs, MT systems were tied or better than the reference translations
 - For sentence-level MT in high-resource settings, we can see some signs for human parity!

German→English

Ave.	Ave. z	System
81.6	0.146	Facebook-FAIR
81.5	0.136	RWTH-Aachen
79.0	0.136	MSRA-MADL
79.9	0.121	online-B
79.0	0.086	JHU
80.1	0.067	MLLP-UPV
79.0	0.066	dfki-nmt
78.0	0.066	UCAM
76.6	0.050	online-A
78.4	0.039	NEU
79.0	0.027	HUMAN
	0.011	uedin
	0.009	online-Y
74.8	0.006	TartuNLP-c
72.9	-0.051	online-G
71.8	-0.128	PROMT-NMT
69.7	-0.192	online-X

- WMT 19' included source-based sentence-level direct assessment with document context
- For 3 out of 9 (De-En, En-De, En-Ru) language pairs, MT systems were tied or better than the reference translations
 - For sentence-level MT in high-resource settings, we can see some signs for human parity!
- However, for document level evaluation, the human translations are still significantly better, unlike in 2018

German→English

Ave.	Ave. z	System
81.6	0.146	Facebook-FAIR
81.5	0.136	RWTH-Aachen
79.0	0.136	MSRA-MADL
79.9	0.121	online-B
79.0	0.086	JHU
80.1	0.067	MLLP-UPV
79.0	0.066	dfki-nmt
78.0	0.066	UCAM
76.6	0.050	online-A
78.4	0.039	NEU
79.0	0.027	HUMAN
77.4	0.011	uedin
77.9	0.009	online-Y
74.8	0.006	TartuNLP-c
72.9	-0.051	online-G
71.8	-0.128	PROMT-NMT
69.7	-0.192	online-X

DR+DC

Ave.	Ave. z	System
84.0	0.915	HUMAN
76.4	0.537	CUNI-Transformer-T2T-2019
76.7	0.528	CUNI-Transformer-T2T-2018
73.7	0.474	CUNI-DocTransformer-T2T
69.7	0.299	CUNI-DocTransformer-Marian
70.0	0.234	uedin
60.0	-0.098	TartuNLP-c
59.9	-0.169	online-Y
57.3	-0.314	online-B
54.7	-0.368	online-G
47.7	-0.619	online-A
47.4	-0.763	online-X

Automatic Evaluation Methods

Is it a good translation?

"奋进"号因机械手故障推迟到升空

Launch of "Endeavour" delayed by robotic arm problems.

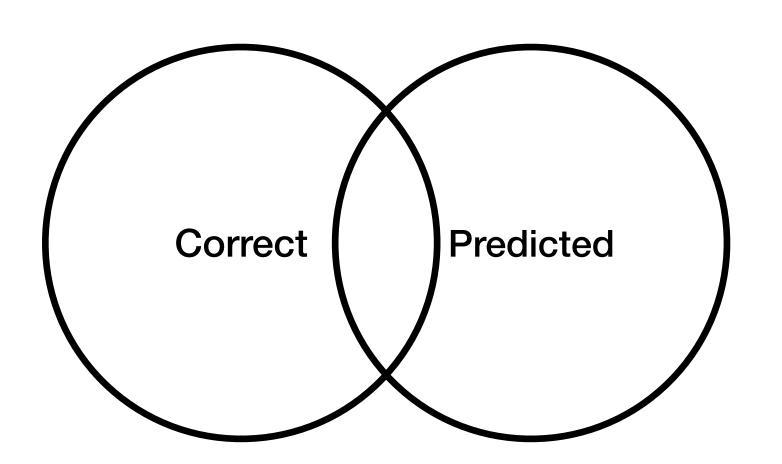
"Progress" postponed because of mechanical hand into the sky.

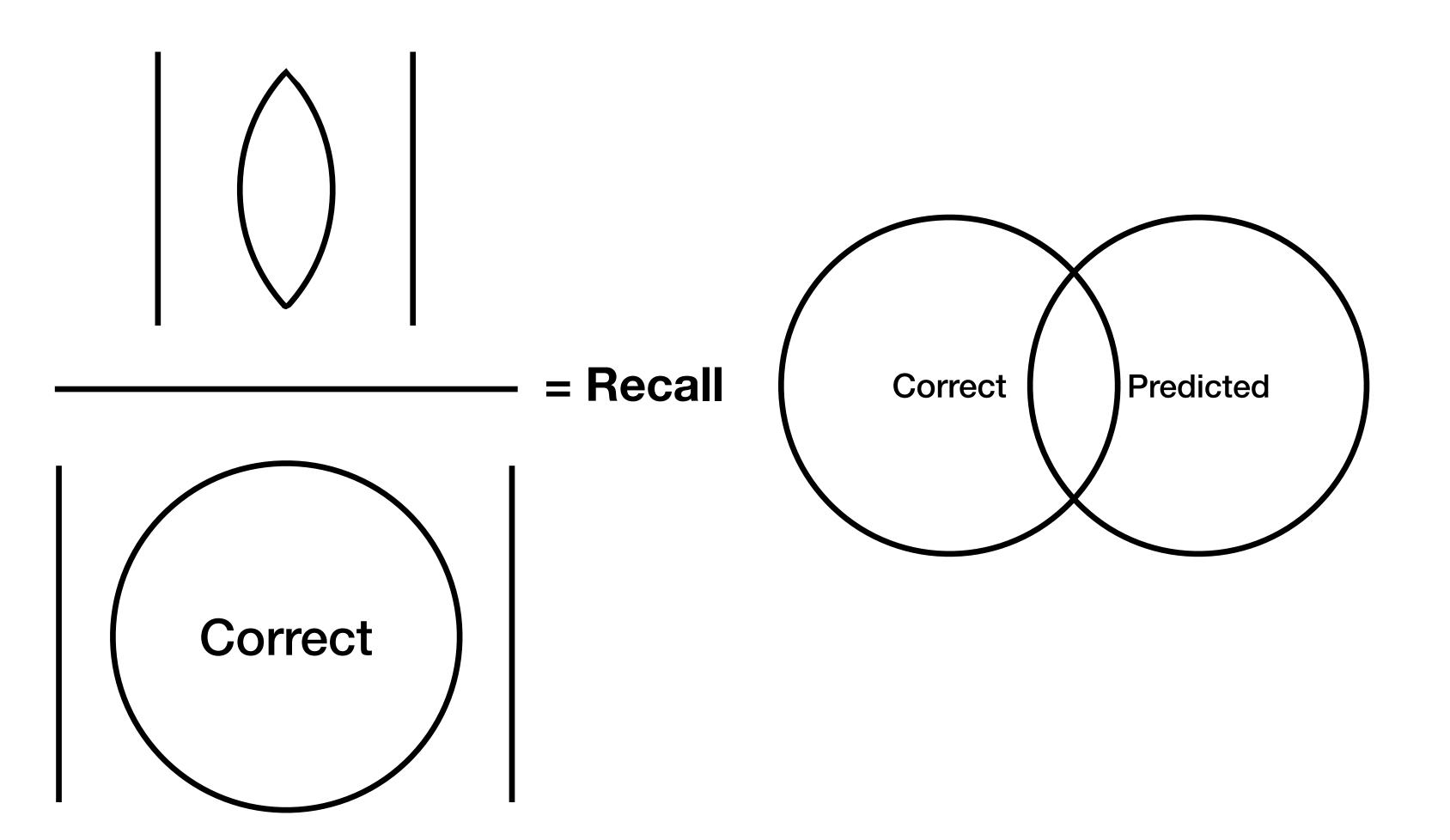
Is it a good translation?

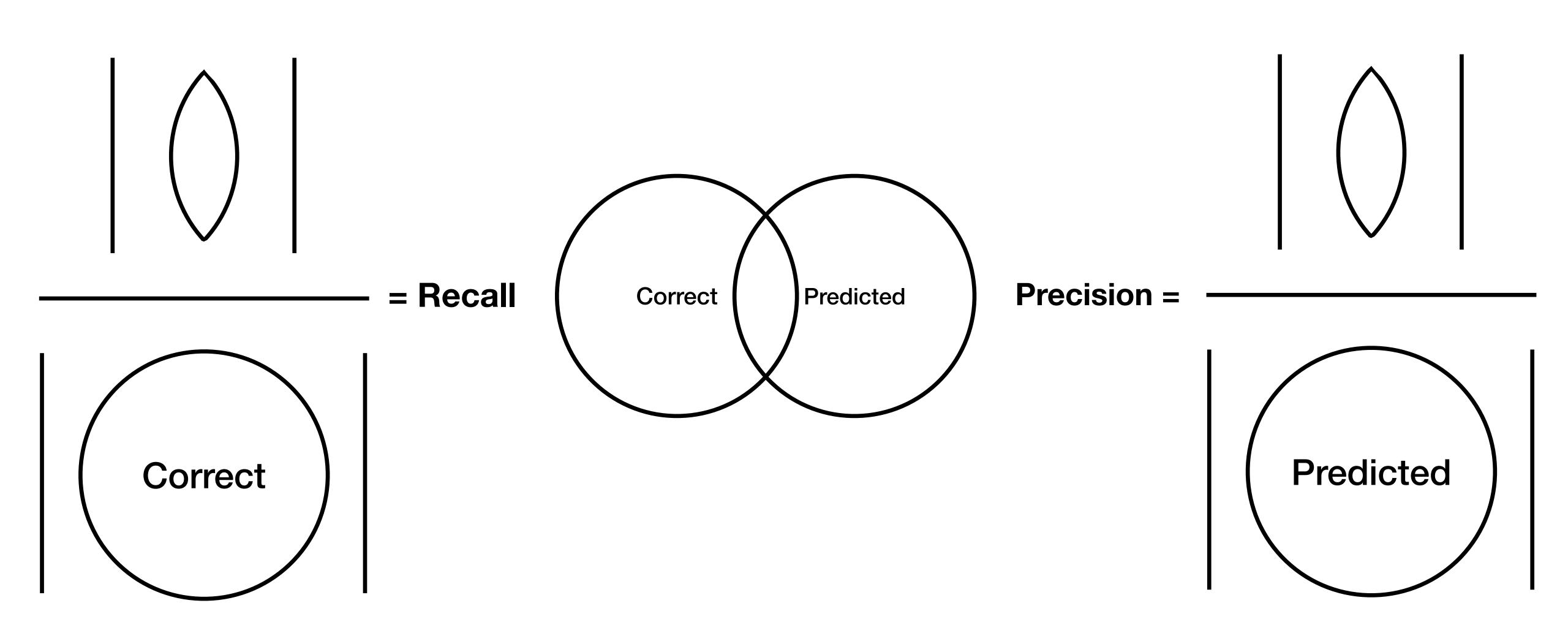
美国愿和北韩谈判但拒绝再付出报酬

US willing to negotiate with North Korea but not to pay more compensation.

The United States is willing to hold talks with North Korea but refused to pay remuneration.







Example - Precision and Recall

Although the northern wind shrieked across the sky , it was still very clear . However, the sky remained clear under the strong north wind.

Example - Precision and Recall

Although the northern wind shrieked across the sky , it was still very clear .

However, the sky remained clear under the strong north wind.

Precision:

7/15 tokens = 47%

Recall:

7/12 tokens = 58%

Example - Precision and Recall

Although the northern wind shrieked across the sky , it was still very clear .

However, the sky remained clear under the strong north wind.

Precision:

7/15 tokens = 47%

Is it enough?

Recall:

7/12 tokens = 58%

Multiple References

Although the northern wind shrieked across the sky , it was still very clear .

However, the sky remained clear under the strong north wind.

Although a north wind was howling, the sky remained clear and blue.

The sky was still crystal clear, though the north wind was howling.

Multiple References

Precision: 11/15 tokens

Although the northern wind shrieked across the sky , it was still very clear .

However, the sky remained clear under the strong north wind.

Although a north wind was howling, the sky remained clear and blue.

The sky was still crystal clear, though the north wind was howling.

Multiple References

Precision: 11/15 tokens

Although the northern wind shrieked across the sky , it was still very clear .

Is it enough?

However, the sky remained clear under the strong north wind.

Although a north wind was howling, the sky remained clear and blue.

The sky was still crystal clear, though the north wind was howling.

Capturing word order

sky very northern shrieked clear wind Although across the the, still was it.

However, the sky remained clear under the strong north wind.

Although a north wind was howling, the sky remained clear and blue.

The sky was still crystal clear, though the north wind was howling.

Capturing word order

Precision: 11/15 tokens

sky very northern shrieked clear wind Although across the the, still was it.

However, the sky remained clear under the strong north wind.

Although a north wind was howling, the sky remained clear and blue.

The sky was still crystal clear, though the north wind was howling.

Capturing word order

Precision: 11/15 tokens

sky very northern shrieked clear wind Although across the the, still was it.

How can we fix this?

However, the sky remained clear under the strong north wind.

Although a north wind was howling, the sky remained clear and blue.

The sky was still crystal clear, though the north wind was howling.

N-gram Precision

Although the northern wind shrieked across the sky, it was still very clear.

However, the sky remained clear under the strong north wind.

Although a north wind was howling, the sky remained clear and blue.

The sky was still crystal clear, though the north wind was howling.

N-gram Precision

```
Precision: 11/15 tokens
4/14 bigrams
1/13 trigrams
```

Although the northern wind shrieked across the sky , it was still very clear .

However, the sky remained clear under the strong north wind.

Although a north wind was howling, the sky remained clear and blue.

The sky was still crystal clear, though the north wind was howling.

N-gram Precision

Precision: 11/15 tokens 0/14 bigrams 0/13 trigrams

sky very northern shrieked clear wind Although across the the, still was it.

However, the sky remained clear under the strong north wind.

Although a north wind was howling, the sky remained clear and blue.

The sky was still crystal clear , though the north wind was howling .

Weakness of precision - low coverage

Precision: 3/1 tokens 2/2 bigrams 1/1 trigrams

very clear .

However, the sky remained clear under the strong north wind.

Although a north wind was howling, the sky remained clear and blue.

The sky was still crystal clear, though the north wind was howling.

Weakness of precision - repetitions

Precision: 11/15 tokens
4/14 bigrams
1/13 trigrams

a north . the was and was the the the though the , the sky

However, the sky remained clear under the strong north wind.

Although a north wind was howling, the sky remained clear and blue.

The sky was still crystal clear, though the north wind was howling.

BLEU

BLEU

BLEU: a Method for Automatic Evaluation of Machine Translation

• "Bilingual Evaluation Understudy"

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA
{papineni,roukos,toddward,weijing}@us.ibm.com

BLEU

BLEU: a Method for Automatic Evaluation of Machine Translation

• "Bilingual Evaluation Understudy"

Published in 2002

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA
{papineni,roukos,toddward,weijing}@us.ibm.com

BLEU

BLEU: a Method for Automatic Evaluation of Machine Translation

• "Bilingual Evaluation Understudy"

- Published in 2002
- 10852 citations, as of 3/2020

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA
{papineni,roukos,toddward,weijing}@us.ibm.com

BLEU

BLEU: a Method for Automatic Evaluation of Machine Translation

- "Bilingual Evaluation Understudy"
- Published in 2002
- 10852 citations, as of 3/2020
- Simple, reproducible, fast

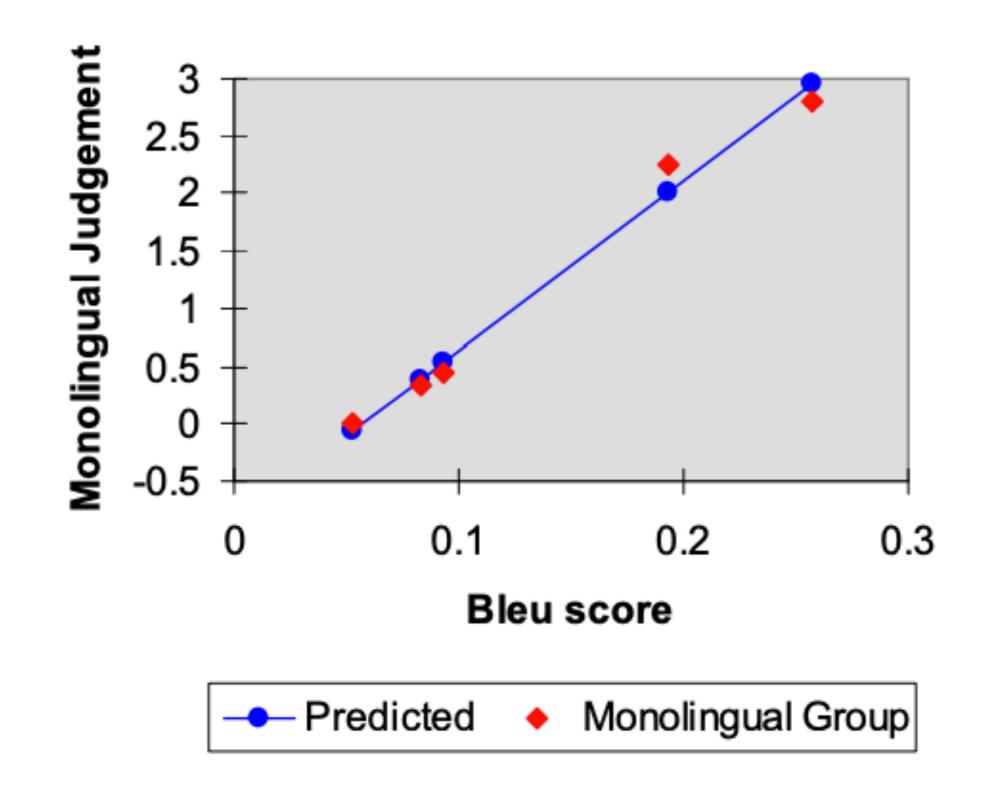
Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA
{papineni,roukos,toddward,weijing}@us.ibm.com

BLEU

BLEU: a Method for Automatic Evaluation of Machine Translation

- "Bilingual Evaluation Understudy"
- Published in 2002
- 10852 citations, as of 3/2020
- Simple, reproducible, fast
- Correlated well with human evaluation

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA
{papineni,roukos,toddward,weijing}@us.ibm.com



BLEU - How it works?

BLEU - How it works?

(clipped) precision for each n-gram size (usually 1-4)

$$p_n = rac{\sum\limits_{n ext{-}gram \in \mathcal{C}} Count_{clip}(n ext{-}gram)}{\sum\limits_{n ext{-}gram' \in \mathcal{C}'} Count(n ext{-}gram')}$$

BLEU - How it works?

(clipped) precision for each n-gram size (usually 1-4)

$$p_n = \frac{\sum\limits_{\substack{n\text{-}gram \in \mathcal{C}\\ n\text{-}gram' \in \mathcal{C'}}} Count_{clip}(n\text{-}gram)}{\sum\limits_{\substack{n\text{-}gram' \in \mathcal{C'}}} Count(n\text{-}gram')}$$

Brevity Penalty - punish if candidate is too short

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{cases}$$

BLEU - How it works?

(clipped) precision for each n-gram size (usually 1-4)

$$p_n = rac{\sum\limits_{\substack{n ext{-}gram \in \mathcal{C}}} Count_{clip}(n ext{-}gram)}{\sum\limits_{\substack{n ext{-}gram' \in \mathcal{C'}}} Count(n ext{-}gram')}$$

Brevity Penalty - punish if candidate is too short

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{cases}$$

BLEU score

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
 $w_n = 1/N$

BLEU - Discussion

BLEU - Discussion

 Can we compare BLEU scores across different systems?

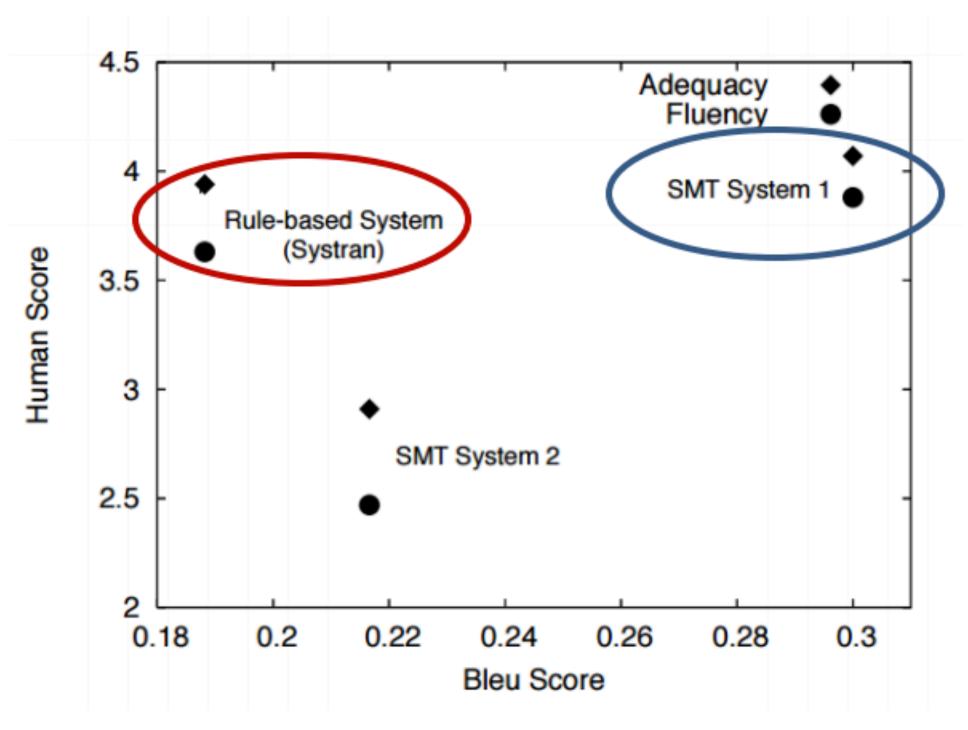
BLEU - Discussion

- Can we compare BLEU scores across different systems?
- Can we compare BLEU scores across different languages?

BLEU - Discussion

- Can we compare BLEU scores across different systems?
- Can we compare BLEU scores across different languages?
- Can we compare BLEU scores across different datasets?

Issues with BLEU

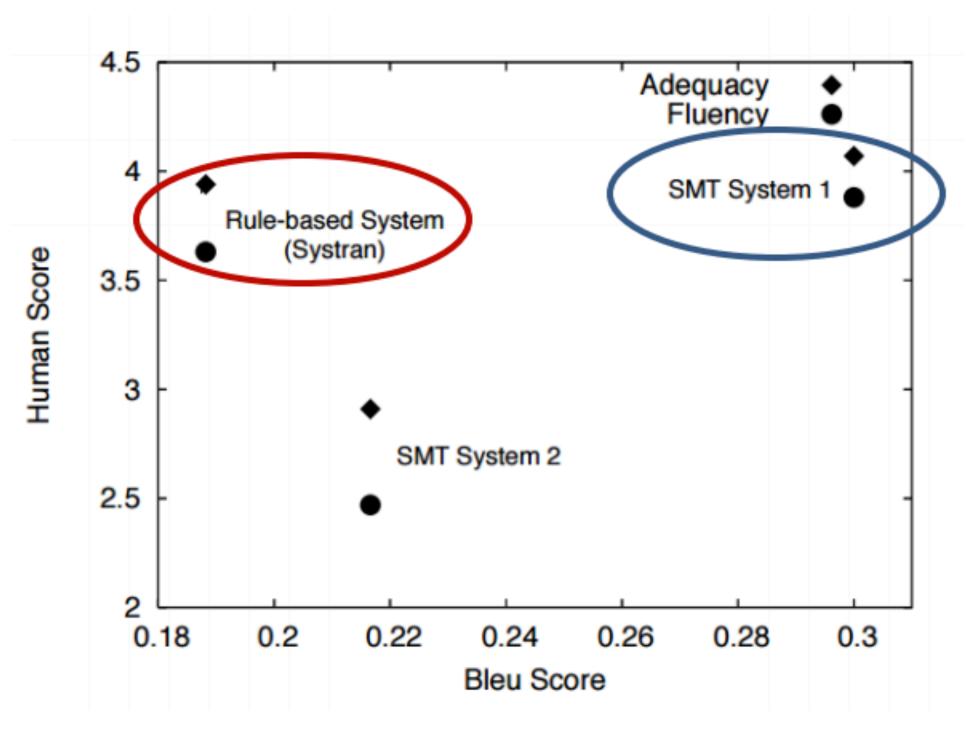


Callison-Burch et al. 2006

A Call for Clarity in Reporting BLEU Scores

Issues with BLEU

 BLEU is not always correlated with human judgements

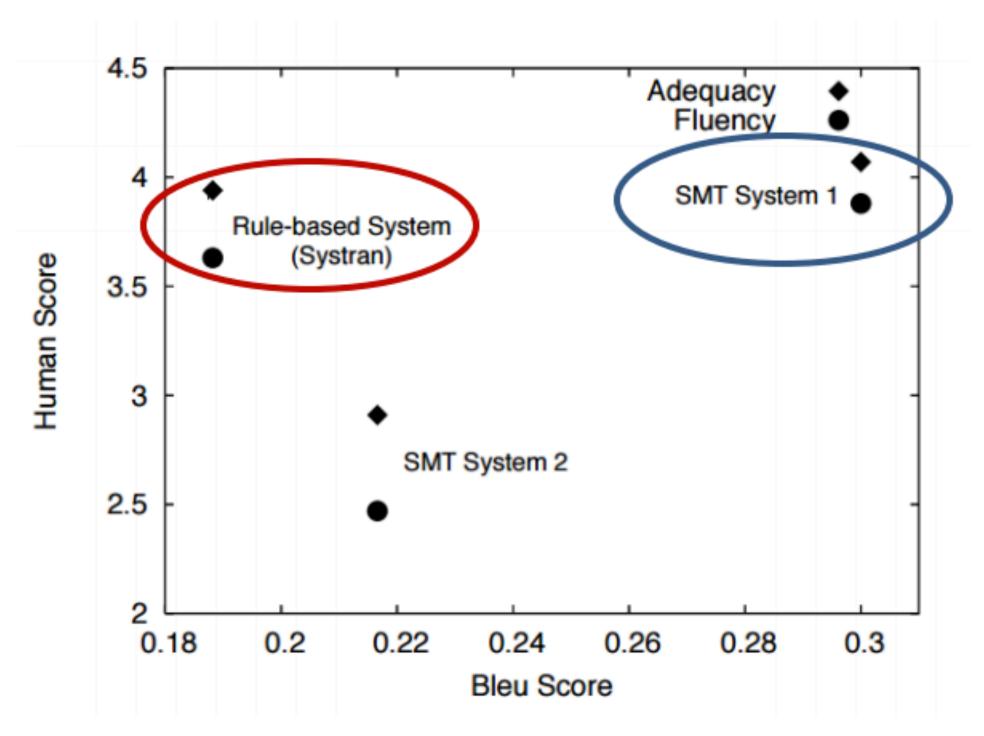


Callison-Burch et al. 2006

A Call for Clarity in Reporting BLEU Scores

Issues with BLEU

- BLEU is not always correlated with human judgements
 - Most current works do not use multiple references

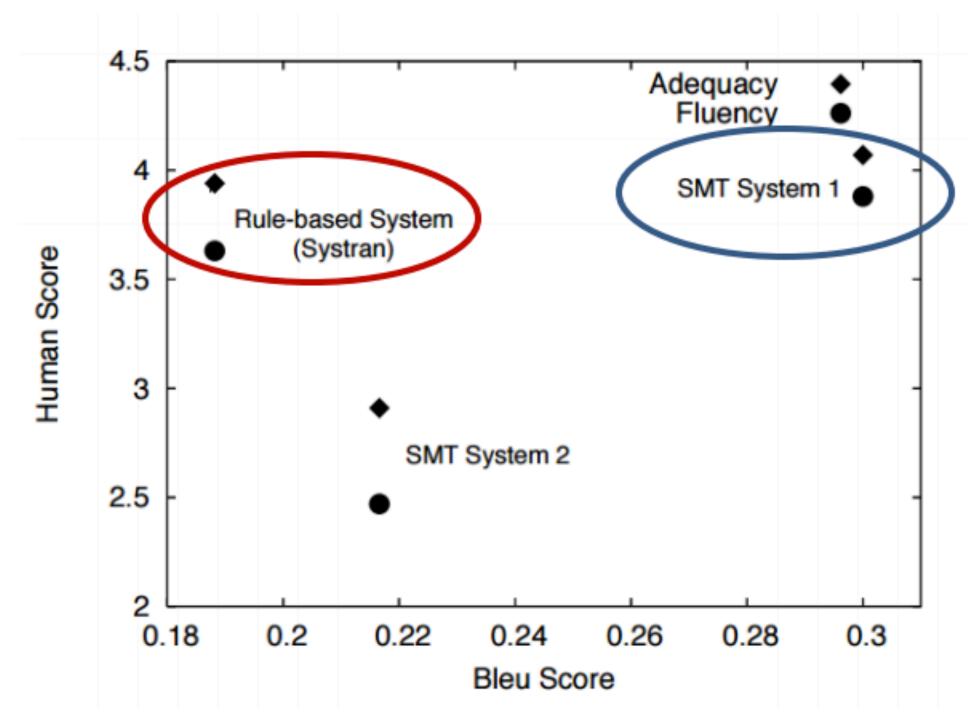


Callison-Burch et al. 2006

A Call for Clarity in Reporting BLEU Scores

Issues with BLEU

- BLEU is not always correlated with human judgements
 - Most current works do not use multiple references
- Differences between implementations

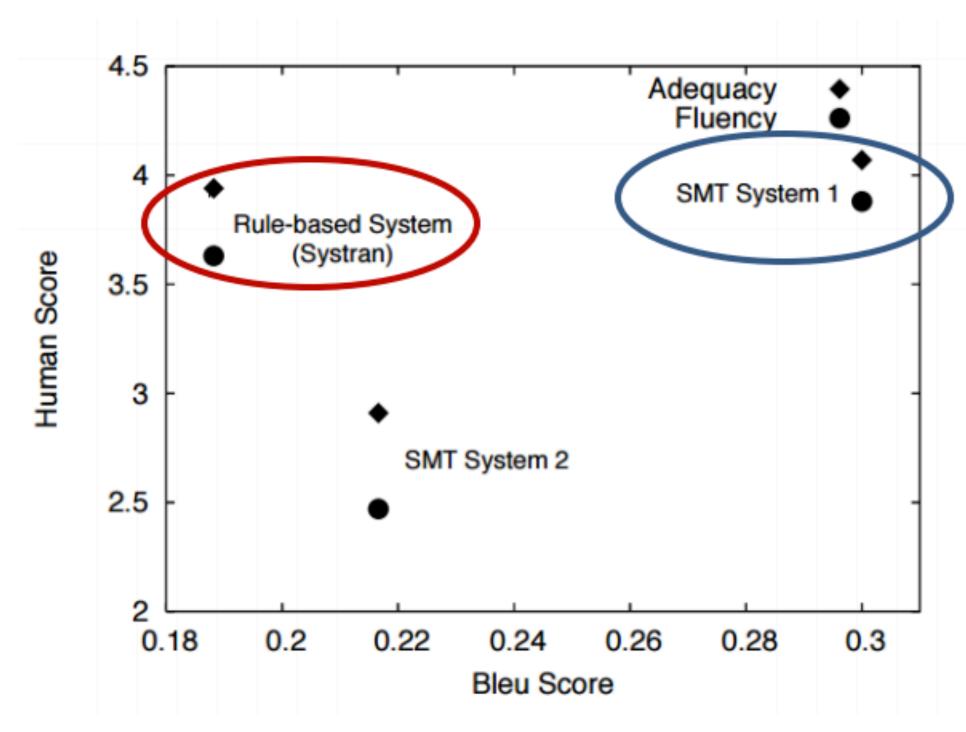


Callison-Burch et al. 2006

A Call for Clarity in Reporting BLEU Scores

Issues with BLEU

- BLEU is not always correlated with human judgements
 - Most current works do not use multiple references
- Differences between implementations
 - Tokenisation, normalisation

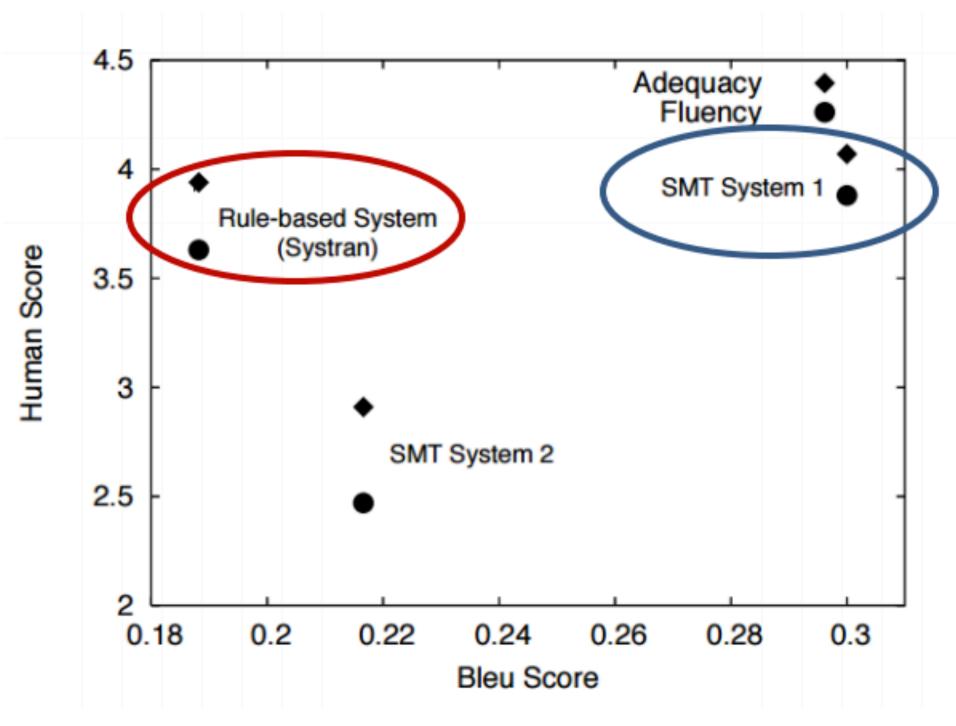


Callison-Burch et al. 2006

A Call for Clarity in Reporting BLEU Scores

Issues with BLEU

- BLEU is not always correlated with human judgements
 - Most current works do not use multiple references
- Differences between implementations
 - Tokenisation, normalisation
 - Use SacreBLEU!



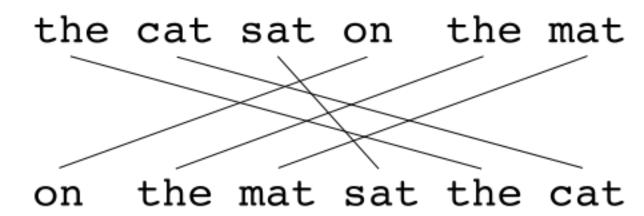
Callison-Burch et al. 2006

A Call for Clarity in Reporting BLEU Scores

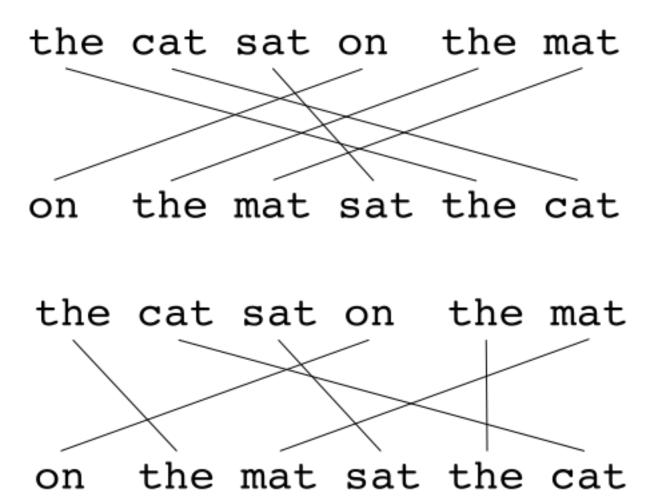
METEOR

"Metric for Evaluation of Translation with Explicit ORdering"

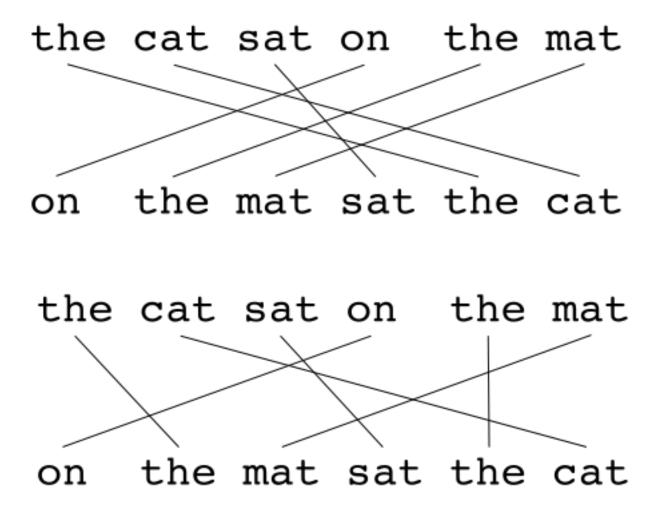
- "Metric for Evaluation of Translation with Explicit ORdering"
- Produces an alignment with iterative matching



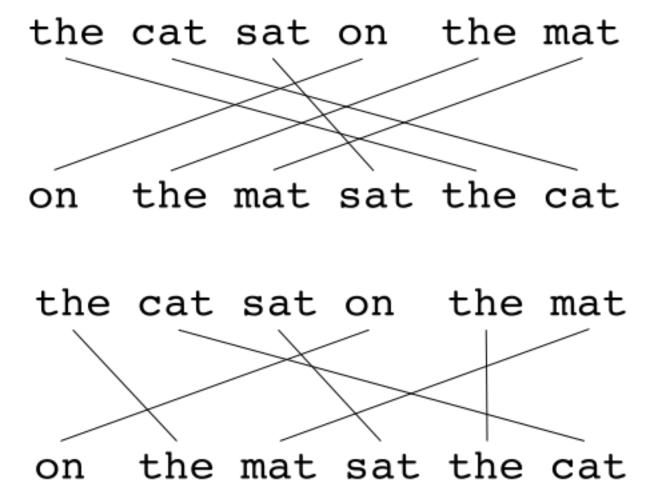
- "Metric for Evaluation of Translation with Explicit ORdering"
- Produces an alignment with iterative matching
 - Preferably with fewest crosses



- "Metric for Evaluation of Translation with Explicit ORdering"
- Produces an alignment with iterative matching
 - Preferably with fewest crosses
- Computes unigram precision and recall

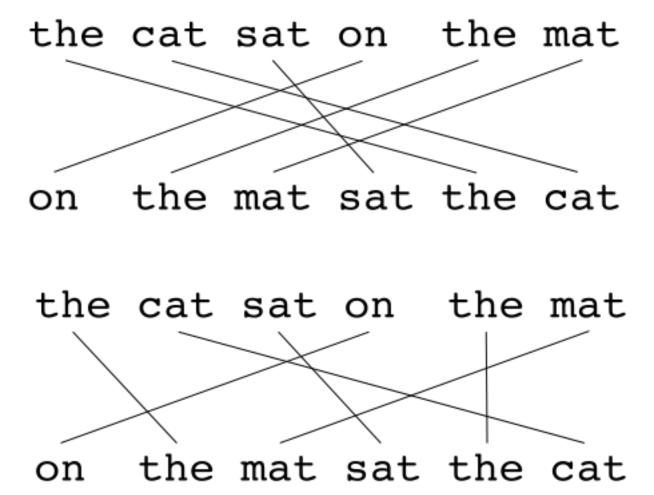


- "Metric for Evaluation of Translation with Explicit ORdering"
- Produces an alignment with iterative matching
 - Preferably with fewest crosses
- Computes unigram precision and recall
- Computes their harmonic mean, with more weight for recall



$$F_{mean} = rac{10PR}{R + 9P}$$

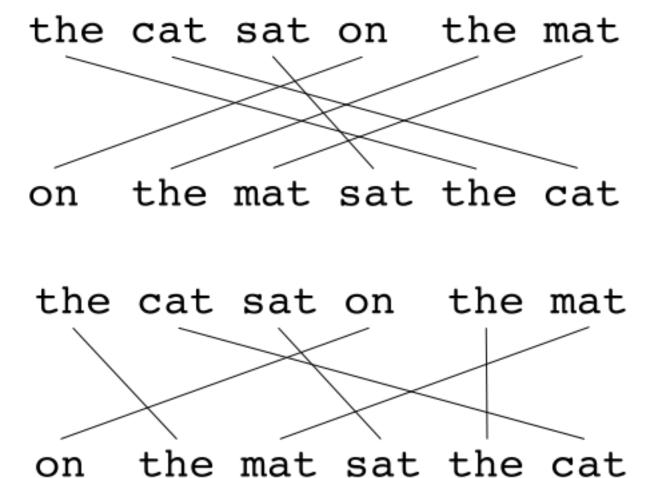
- "Metric for Evaluation of Translation with Explicit ORdering"
- Produces an alignment with iterative matching
 - Preferably with fewest crosses
- Computes unigram precision and recall
- Computes their harmonic mean, with more weight for recall
- Penalise alignments with non-consecutive chunks



$$F_{mean} = \frac{10PR}{R + 9P}$$

$$p = 0.5 \left(\frac{c}{u_m}\right)^3$$

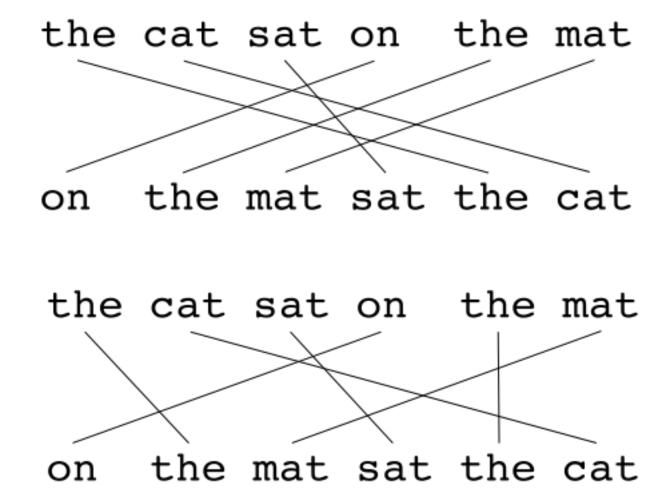
- "Metric for Evaluation of Translation with Explicit ORdering"
- Produces an alignment with iterative matching
 - Preferably with fewest crosses
- Computes unigram precision and recall
- Computes their harmonic mean, with more weight for recall
- Penalise alignments with non-consecutive chunks
- ullet Final score: $M=F_{mean}(1-p)$



$$F_{mean} = \frac{10PR}{R + 9P}$$

$$p = 0.5 \left(\frac{c}{u_m}\right)^3$$

- "Metric for Evaluation of Translation with Explicit ORdering"
- Produces an alignment with iterative matching
 - Preferably with fewest crosses
- Computes unigram precision and recall
- Computes their harmonic mean, with more weight for recall
- Penalise alignments with non-consecutive chunks
- ullet Final score: $M=F_{mean}(1-p)$
- Also uses stemming ("goods"-"good"), synonyms ("well"-"good")



$$F_{mean} = \frac{10PR}{R + 9P}$$

$$p = 0.5 \left(\frac{c}{u_m}\right)^3$$

Contrastive Evaluation

Contrastive Evaluation

One problem with BLEU/METEOR - not specific:

Contrastive Evaluation

- One problem with BLEU/METEOR not specific:
 - What can we learn from X>Y? Why X>Y?

Contrastive Evaluation

- One problem with BLEU/METEOR not specific:
 - What can we learn from X>Y? Why X>Y?
- An alternative measure a specific linguistic phenomena

Contrastive Evaluation

- One problem with BLEU/METEOR not specific:
 - What can we learn from X>Y? Why X>Y?
- An alternative measure a specific linguistic phenomena

How Grammatical is Character-level Neural Machine Translation? Assessing MT Quality with Contrastive Translation Pairs

Rico Sennrich
School of Informatics, University of Edinburgh
{rico.sennrich}@ed.ac.uk

Contrastive Evaluation

- One problem with BLEU/METEOR not specific:
 - What can we learn from X>Y? Why X>Y?
- An alternative measure a specific linguistic phenomena

How Grammatical is Character-level Neural Machine Translation? Assessing MT Quality with Contrastive Translation Pairs

Rico Sennrich
School of Informatics, University of Edinburgh
{rico.sennrich}@ed.ac.uk

Transliteration: Aumann - אומן Yonat - יונת

Contrastive Evaluation

- One problem with BLEU/METEOR not specific:
 - What can we learn from X>Y? Why X>Y?
- An alternative measure a specific linguistic phenomena

How Grammatical is Character-level Neural Machine Translation? Assessing MT Quality with Contrastive Translation Pairs

Rico Sennrich School of Informatics, University of Edinburgh {rico.sennrich}@ed.ac.uk

Transliteration: Aumann - אומן Yonat - יונת

Subject-verb agreement: הלכה, אכלה, ישבה - She הלך, אכל, ישב - He

Contrastive Evaluation

- One problem with BLEU/METEOR not specific:
 - What can we learn from X>Y? Why X>Y?
- An alternative measure a specific linguistic phenomena

How Grammatical is Character-level Neural Machine Translation? Assessing MT Quality with Contrastive Translation Pairs

Rico Sennrich School of Informatics, University of Edinburgh

{rico.sennrich}@ed.ac.uk

Transliteration: Aumann - אומן

יונת - Yonat

Subject-verb agreement:

הלכה, אכלה, ישבה - She הלך, אכל, ישב - He

Polarity/Negation:

לא בטוח - Uncertain

Contrastive Evaluation

- One problem with BLEU/METEOR not specific:
 - What can we learn from X>Y? Why X>Y?
- An alternative measure a specific linguistic phenomena

How Grammatical is Character-level Neural Machine Translation? Assessing MT Quality with Contrastive Translation Pairs

Rico Sennrich

School of Informatics, University of Edinburgh {rico.sennrich}@ed.ac.uk

Transliteration:

Aumann - אומן Yonat - יונת

Subject-verb agreement:

הלכה, אכלה, ישבה - She הלך, אכל, ישב - He

Polarity/Negation:

לא בטוח - Uncertain

Ambiguous words:

Example containing **ambiguous word**It occurred to me that my **watch** might be broken.

I hope you didn't get distracted during your **watch**.

Wache

Armbanduhr, Uhr

Wache

Armbanduhr, Uhr

Contrastive Evaluation

- One problem with BLEU/METEOR not specific:
 - What can we learn from X>Y? Why X>Y?
- An alternative measure a specific linguistic phenomena
- General Idea for each source sentence:

How Grammatical is Character-level Neural Machine Translation? Assessing MT Quality with Contrastive Translation Pairs

Rico Sennrich

School of Informatics, University of Edinburgh {rico.sennrich}@ed.ac.uk

Transliteration:

Aumann - יונת Yonat - יונת

Subject-verb agreement:

הלכה, אכלה, ישבה - She He - הלך, אכל, ישב

Polarity/Negation:

לא בטוח - Uncertain

Ambiguous words:

Example containing **ambiguous word**It occurred to me that my **watch** might be broken.

I hope you didn't get distracted during your **watch**.

Wache

Armbanduhr, Uhr

Wache

Armbanduhr, Uhr

Contrastive Evaluation

- One problem with BLEU/METEOR not specific:
 - What can we learn from X>Y? Why X>Y?
- An alternative measure a specific linguistic phenomena
- General Idea for each source sentence:
 - Create two translation options one correct, one wrong

How Grammatical is Character-level Neural Machine Translation? Assessing MT Quality with Contrastive Translation Pairs

Rico Sennrich

School of Informatics, University of Edinburgh {rico.sennrich}@ed.ac.uk

Transliteration:

Aumann - אומן יונת - Yonat

Subject-verb agreement:

She - הלכה, אכלה, ישבה הלך, אכל, ישב - He

Polarity/Negation:

לא בטוח - Uncertain

Ambiguous words:

Example containing ambiguous word Correct translations Incorrect translations It occurred to me that my watch might be broken. Armbanduhr, Uhr Wache I hope you didn't get distracted during your watch. Armbanduhr, Uhr

Wache

Contrastive Evaluation

- One problem with BLEU/METEOR not specific:
 - What can we learn from X>Y? Why X>Y?
- An alternative measure a specific linguistic phenomena
- General Idea for each source sentence:
 - Create two translation options one correct, one wrong
 - Score each option with the MT system

How Grammatical is Character-level Neural Machine Translation? Assessing MT Quality with Contrastive Translation Pairs

Rico Sennrich

School of Informatics, University of Edinburgh {rico.sennrich}@ed.ac.uk

Transliteration:

Aumann - יונת Yonat - יונת

Subject-verb agreement:

הלכה, אכלה, ישבה - She He - הלך, אכל, ישב

Polarity/Negation:

Uncertain - לא בטוח

Ambiguous words:

Example containing ambiguous word Correct translations Incorrect translations

It occurred to me that my watch might be broken. Armbanduhr, Uhr

I hope you didn't get distracted during your watch. Wache

Wache

Armbanduhr, Uhr

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Contrastive Evaluation

- One problem with BLEU/METEOR not specific:
 - What can we learn from X>Y? Why X>Y?
- An alternative measure a specific linguistic phenomena
- General Idea for each source sentence:
 - Create two translation options one correct, one wrong
 - Score each option with the MT system
 - Count how many times the system preferred the correct option

How Grammatical is Character-level Neural Machine Translation? Assessing MT Quality with Contrastive Translation Pairs

Rico Sennrich

School of Informatics, University of Edinburgh {rico.sennrich}@ed.ac.uk

Transliteration:

Aumann - יונת Yonat - יונת

Subject-verb agreement:

הלכה, אכלה, ישבה - She He - הלך, אכל, ישב

Polarity/Negation:

לא בטוח - Uncertain

Ambiguous words:

Example containing ambiguous word	Correct translations	Incorrect translations
It occurred to me that my watch might be broken. I hope you didn't get distracted during your watch.	Armbanduhr, Uhr Wache	Wache Armbanduhr, Uhr

STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Contrastive Evaluation

- One problem with BLEU/METEOR not specific:
 - What can we learn from X>Y? Why X>Y?
- An alternative measure a specific linguistic phenomena
- General Idea for each source sentence:
 - Create two translation options one correct, one wrong
 - Score each option with the MT system
 - Count how many times the system preferred the correct option
- Problem?

How Grammatical is Character-level Neural Machine Translation? Assessing MT Quality with Contrastive Translation Pairs

Rico Sennrich

School of Informatics, University of Edinburgh {rico.sennrich}@ed.ac.uk

Transliteration:

Aumann - יונת Yonat - יונת

Subject-verb agreement:

הלכה, אכלה, ישבה - She He - הלך, אכל, ישב

Polarity/Negation:

לא בטוח - Uncertain

Ambiguous words:

Example containing **ambiguous word**Correct translations

Incorrect translations

It occurred to me that my **watch** might be broken. Armbanduhr, Uhr

I hope you didn't get distracted during your **watch**. Wache

Armbanduhr, Uhr

• Evaluation is important!

- Evaluation is important!
- Human evaluation is best, but: expensive, slow, subjective

- Evaluation is important!
- Human evaluation is best, but: expensive, slow, subjective
- Automatic evaluation is cheap, fast and objective

- Evaluation is important!
- Human evaluation is best, but: expensive, slow, subjective
- Automatic evaluation is cheap, fast and objective
 - BLEU is not perfect, but very popular

- Evaluation is important!
- Human evaluation is best, but: expensive, slow, subjective
- Automatic evaluation is cheap, fast and objective
 - BLEU is not perfect, but very popular
 - Contrastive evaluation is informative

- Evaluation is important!
- Human evaluation is best, but: expensive, slow, subjective
- Automatic evaluation is cheap, fast and objective
 - BLEU is not perfect, but very popular
 - Contrastive evaluation is informative
- Human parity is here?

- Evaluation is important!
- Human evaluation is best, but: expensive, slow, subjective
- Automatic evaluation is cheap, fast and objective
 - BLEU is not perfect, but very popular
 - Contrastive evaluation is informative
- Human parity is here?
 - Only in the sentence level, for high resource languages

- Evaluation is important!
- Human evaluation is best, but: expensive, slow, subjective
- Automatic evaluation is cheap, fast and objective
 - BLEU is not perfect, but very popular
 - Contrastive evaluation is informative
- Human parity is here?
 - Only in the sentence level, for high resource languages
 - More work is needed!

