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How can we learn to translate?
YRV,

la. ok-voon ororok sprok . 6a. lalok sprok izok jok stok .

| | | 7’ \
l1b. at-voon bichat dat . 6b. wat dat krat quat cat
2a. ok-drubel ok-voon anok plok sprok . 7Ja. lalok farok ororok lalok sprok izok enemok .
2b. at-drubel at-voon pippat rrat dat . 7b. wat jjat bichat wat dat vat eneat .
3a. erok sprok izok hihok ghirok . 8a. lalok brok anok plok nok .

| \ > /s 7’ /

3b. totat dat arrat vat hilat . 8b. iat lat pippat rrat nnat
4a. ok-voon anok drok brok jok . 9a. wiwok nok izok kantok ok-yurp .

! ~~ \ |
4b. at-voon krat pippat sat lat . 9b. totat nnat quat oloat at-yurp .
5a. wiwok farok izok stok . 10a. lalok mok nok yorok ghirok clok .

/ ~

5b. totat jjat quat cat . 10b. wat nnat gat mat bat hilat
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How can we learn to translate?

Translation dictionary:

e What can we learn from? anok - pippat ok-yurp - at-yurp |
erok - total ok-voon - at-voon lIranslation
ghirok - hilat ororok - bichat Mode|
hihok - t lok - t

e Parallel Corpora (human izon — vap D ook - dat

ok-drubel -~ at-drubel zanzanok - zanzanat

translations)
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wikipedia, the web...)

e \What do we learn?



STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

How can we learn to translate?

Translation dictionary:

e What can we learn from? anok - pippat ok-yurp - at-yurp |
erok - total ok-voon - at-voon lIranslation
gl}irok - hilat ororok - bichat Model

e Parallel Corpora (human fzok - vat | s = doh

ok-drubel -~ at-drubel zanzanok - zanzanat

translations)

Word pair counts:

e Monolingual corpora (books, L. erok L hihok yorok
. . . . alo %20 ex.xemo L
wikipedia, the web...) 2 - Ok-drubel 2 dzok bihok T el
3 . wiwok 1 %zok kantok
e What do we learn? 2 amok ghirok 1 isok vok
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Let's try to formalize this...

def learn(parallel data):

o Learning/Training Phase return parameters
L: (X xX,)" — 06

def translate(French, parameters):

e Inference Phase return English

T :X% x O — X,

e How? Using probability: T'(f,0) = arg m

max po(elf)
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Why probability?

e Formalizes...

* The concept of models
* The concept of data

 The concept of learning

 The concept of inference (prediction)

L Al-Khalil ibn Ahmad al-Farahidi, 718-786
* Enables to model ambiguity Image: Wikipedia
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Translation as a probabilistic problem

p(English) x p(Chinese|English)
e We would like to model the probability p(Chinese) \

of a translation given a source
sentence language model translation model

 We can use Bayes Rule normalization (ensures we’re working

with valid probabilities).

e Why would we want that?
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How do we define p(Chinese |English)?

* IBM Models (Brown, Dellapietra, Dellapietra, and Mercer, 93')

o “We define a concept of word-by-word alignment”

wl
! a‘}&ﬂ
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How do we define p(Chinese | English)?

* IBM Models (Brown, Dellapietra, Dellapietra, and Mercer, 93')

o “We define a concept of word-by-word alignment”

Although north wind howls , but sky  still  very clear .
A R R, 2 RE ORAK o i .

l'j‘ R l!
‘JM

However , the sky remained clear under the strong north wind .
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Understanding Alignments

1 2 3 3

e Alignment function das Haus ist klein

the house 1I1s small
1 2 3 4

N
N
- .
-
o -
— -~

(II]] l l}
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Understanding Alignments

e Alignment function

e Reordering

1 2 3 4
kKlein I1st das Haus

S

the house 1I1s small
1 2 3 4

-
N
— -
-
o
»
——
-
H—d

(1311

ROEE AHARONI
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Understanding Alignments

e Alignment function
e Reordering

e One-to-Many

1
das Haus |St klltzekleln

/\

the house Is very small
1 2 3 4 o

ROEE AHARONI
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e Alienment function
5 das Haus |st kleln

e Reordering
e One-to-Many

Sronn house Is small
 Dropping words
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Understanding Alignments

. Alignment function 0 i 5 3 4
NULL das Haus ist klein
e Reordering
e One-to-Many \I\I\L \
the house Is just small

 Dropping words : 5 ] . :

* Inserting words
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IBM Model1’'s Generative Story

e Given a source sentence, how was the Although north wind howls , but sky still very clear
target sentence generated? 2R dL W R, {2 RE KRR T4 FiK

e Sample a length for the target sentence
e For each target position:

e Sample an alignment (to a position in the
source)

* Sample a word translation given this However , the sky remained clear under the strong north wind .
alignment

e Repeat until done
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IBM Model1

sample
alignment

|

pla;|J) - p(filéa.

!

sample
sentence
length
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IBM Model1

sample
alignment

|

p(I|7) | | p(ailJ) - p(filea,)

l l

sample sample

sentence word
length translation
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IBM Model1

o f - foreign sentence (Chinese) sample
alignment

|

p(I|7) | | p(ailJ) - p(filea,)

=1

sample sample

sentence word
length translation
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IBM Model1
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sample sample
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IBM Model1

o f - foreign sentence (Chinese) sample
alignment

* 3 -alignment

e e - English sentence ! l

p(I|7) | | p(ailJ) - p(filea,)

* | - foreign sentence length
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e | - English sentence length

* a_i - alignment of i-th foreign word
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IBM Model1

o f - foreign sentence (Chinese) sample
alignment

* 3 -alignment

e e - English sentence ! l

p(I|7) | | p(ailJ) - p(filea,)

* | - foreign sentence length
=1
e | - English sentence length

* a_i - alignment of i-th foreign word

sample sample
. . . L word
o f_i-foreign word in position i sentence .
length translation

e e {a_i} - English word in position a_i



RRRRRRRRRRR




STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

How can we learn this from data?

e \What are the parameters we
should learn?




STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

How can we learn this from data?

e \What are the parameters we l
should learn?
(ai|J) - p(fil€a,

e Sentence length distributions

!

Sentence length
distributions



STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

How can we learn this from data?

Alignment
distributions
e \What are the parameters we l
should learn?

(ai|J) - p(fil€a;)
e Sentence length distributions

l

o Alignment distributions

Sentence length
distributions
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How can we learn this from data?

Alignment
distributions
e \What are the parameters we l
should learn?

(ai|J) - p(fil€a;)
e Sentence length distributions

l

, , , . Sentence length Word translation
e Word translation distributions distributions distributions

o Alignment distributions
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How can we learn this from data?

e [f we know the alignments, easy:

# Alighed Chinese sentences of length |

e p(/]J) - learn by counting o(l])) =

# English sentences of length ]

» Alignment distributions - use | 1
uniform distribution pla_il))= ——
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How can we learn this from data?

e [f we know the alignments, easy:

# Alighed Chinese sentences of length |

: i ) =
’ ,U(/ U) learn by COuntmg P( U) # English sentences of length ]
» Alignment distributions - use | 1
uniform distribution plail)) = —
e Word translation distributions - # times “#Ai"” aligned to “however”

- - however | 2xM) = —mmm——————————————
dgaln by countmg ,0( ‘ ) # times “7AM" aligned to any word
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How can we learn this from data?

e [f we know the alignments, easy:

# Alighed Chinese sentences of length |

_ ' [1]) =
’ ,U(/ U) learn by COuntmg P( U) # English sentences of length ]
» Alignment distributions - use | 1
uniform distribution plail)) = —
e Word translation distributions - " o # times “#&ATi" aligned to “however”
- - owever |¢xm) = —m—m—————
again by counting p( ‘ ) # times “#R" aligned to any word

e But do we know the alignments?
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Alignments as Latent Variables

e Parameters (translation
probabilities) and alignments are
both unknown!

o |[f we knew the alignments in the
training data, we could calculate the
parameters by counting (prev. slide)

o |[f we knew the parameters, we
could calculate the expected
alignment counts

\ectorStock®
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The Expectation-Maximization (EM) Algorithm

e Dempster, Laird and Rubin (1977) Delay

100 ]

e One of the most widely used algorithms in
machine learning

207

e0

e Many applications, e.g. clustering ¥ 55

70 ' , o

e Main idea - start randomly, and iterate until o

convergence: wl  iph
. . “ﬁ.*{ -
* Calculate expected counts for missing data o
(expectation, or E-step) using current model 5
40 ' ! Duration
1 2 3 4 = 6

e Find new model parameters that maximize
the data likelihood (maximization, or M-step)
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and it's possible translations (E-step)




STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

EM for IBM Model1 - Overview

. . . ... la maison ... la maison blue ... la fleur ...
o Start with all alignments equally likely % >§E 7 ><
: In eaCh Iteratlon ... the house ... the blue house ... the flower ...

e |00k at the entire dataset and sum the
(expected) alignments we saw for each word
and it's possible translations (E-step)

e Update the translation probabilities according
to those global counts (M-step)...



STATISTICAL MACHINE TRANSLATION

EM for IBM Model1 - Overview

o Start

with all alignments equally likely

e |n each iteration:

e |00
(ex

K at the entire dataset and sum the

pected) alignments we saw for each word

and it's possible translations (E-step)

e Update the translation probabilities according
to those global counts (M-step)...

o ..which will update the alignment counts

2020

. la maison ...

X

. the house ...

. la maison ...

X

. the house ...

X5

the blue house ...

la maison blue ...

X

the blue house ...

la maison blue ...

ROEE AHARONI

la fleur ...

X

the flower ...

la fleur ...

<

the flower ...
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EM for IBM Model1 - Overview

o Start with all alignments equally likely
* [n each iteration:

e |00k at the entire dataset and sum the
(expected) alignments we saw for each word
and it's possible translations (E-step)

e Update the translation probabilities according
to those global counts (M-step)...

o ..which will update the alignment counts

e Repeat steps above

. la maison ...

X

. the house ...

. la maison ...

X

. the house ...

. la maison ...

IA

. the house ...

X5

the blue house ...

la maison blue ...

X

the blue house ...

la maison bleu ...

X

the blue house ...

la maison blue ...

ROEE AHARONI

la fleur ...

X

the flower ...

la fleur ...

<

the flower ...

la fleur ...

the flower ...
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EM for IBM Model1 - Overview

o Start with all alignments equally likely
* [n each iteration:

e |00k at the entire dataset and sum the
(expected) alignments we saw for each word
and it's possible translations (E-step)

e Update the translation probabilities according
to those global counts (M-step)...

o ..which will update the alignment counts
e Repeat steps above

e Until convergence

. la maison ...

X

. the house ...

. la maison ...

X

. the house ...

. la maison ...

IA

. the house ...

. la maison ...

n

. the house ...

la maison blue ...

X5

the blue house ...

X

la maison blue ...

P X

the blue house ...

la maison bleu ...

X

the blue house ...

la maison bleu ...

| X

the blue house ...

ROEE AHARONI

la fleur ...

the flower ...

la fleur ...

the flower ...

la fleur ...

the flower ...

la fleur ...

the flower ...
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EM for IBM Model1 - Computation

e We need to compute:

o Expectation step: probability of ])((1 €, f)
alignments
 Maximization step: probability of t((% f S f)

word translations
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EM for IBM Model 1 - Expectation Step

e Apply the chain rule p(e, alf)
Pt = e
e Numerator - IBM Model 1 definition
e Denominator: p(elf) = Zp e, alf)
e Marginalize over all possible S S
alignments = 2~ 2 plealf)
a(1)=0 a(le)=0
i [

e IBM model 1 definition J €
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L !

g .' ,

{ \ - ( / . ’ | \
/)(C|f,) = Z Z (t/,' 1) H /(('/‘,/,,.:'/,)
al(l)=0 al(l,)=0 1=1

/ L [
(
— / l ] Z Z H /(( /‘/ } )
( f | ) | )=0 a(l,.)=071=1
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EM for IBM Model 1 - Expectation Step

e We want to get rid of the 0 e
exponential number of el IZ( ./Z(.m - 1)k H/(”'m)
multiplications o / ] /,,

T (1)’ 12:(,“.,,./2:“,1—[1/“// g
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EM for IBM Model 1 - Expectation Step

o We want to get rid of the 7 J | ]
exponential number of plelt) IZ( /Z( 0+ 1) Hl (€1 fa(s))
all)=0 all,.)=0 g
multiplications . o
¢ , .
= - t(e.|] |
* Move the constants out Iy +1)" IZ ,Z/Hl S
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EM for IBM Model 1 - Expectation Step

o We want to get rid of the ’
exponential number of plelf) = Z Z e 1>/ H/w | fa(

(1)=0) ([,.)=0

multiplications ] P

3 3 Tl

(1 )=0() v(l,.)=0 71=1

e Move the constants out (1 f

o | ast trick - change sum of products H Z (el f:)
to product of sums ' -
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EM for IBM Model 1 - Expectation Step

« So finally we got: p(ale. f) = p(e, alf) /p(e|f)

_ be
(lf—:l)[(’ HjZl t(€J|fa(1))
<lf-+€1)1« [1,21 2 im0 tlesl /i)

le

l .
j=1 Zzﬁf:() t(e]- fi)
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EM for IBM Model 1 - Expectation Step

e So finally we got: p(ale,f) = p(e,alf)/p(elf)
* Probability of alienment given a ¢ be
1118Y% 18 gV (lf+1)’(" Hj:l t(€.7|.fcz(.j))

sentence pair

|

_—
—~~

Qv
S~
—h
—~
S
S
—
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EM for IBM Model 1 - Expectation Step

e So finally we got: p(ale,f) = p(e,alf)/p(elf)
e Probability of ali t gi e
robability of alignment given a L [[=1t(ejlfas))

sentence pair —

€ Le lf
| 1\ le Hr:l Zz —0 t<()1‘fi)
e Based on the translation Lyt !
probabilities alone II—I t(€j|fa(j))
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EM for IBM Model 1 - Expectation Step

e So finally we got: p(ale,f) = p(e,alf)/p(elf)
* Probability of alicnment given a ¢ le
1 y |g glV (lerl)l(" Hj:l ZL(()}lf(z<}))

sentence pair —

e Based on the translation
probabilities alone ll_I t(e;lfa(i))

L ¢
* We will use this to get the j=12_i—o t(€;|fi)
expected alignment counts
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EM for IBM Model 1 - Maximization Step

e We want to collect alignment counts
to compute the new translation
parameters, using the current
translation parameters

* For each possible pair (e,f) in each
example (e,f) sum the expected
counts of this translation

L
(‘<(’|f: e. f) — Z [)((1‘6. f) Z (5((?‘. (/>(5<]t f(,(/ ))
a 71=1
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EM for IBM Model 1 - Maximization Step

e We want to collect alignment counts
to compute the new translation
parameters, using the current
translation parameters

* For each possible pair (e,f) in each
example (e,f) sum the expected ] /
( /

counts of this translation t(elf) S 5(eres) S 6(f £
. . y © J s J
i—o tlelfi) 5= i=0

2
clelfie,f) =) plale,f) Y d(e.e;)0(f. fuiy)
a 7=1
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EM for IBM Model 1 - Maximization Step

e We want to collect alignment counts
to compute the new translation
parameters, using the current
translation parameters

p(the|la) = 0.7 p(house|la) = 0.05

p(the/maison) = 0.1 p(house/maison) = 0.8

f) f) e.e.VO(T. [ .
* For each possible pair (e,f) in each clfe. ZP le; Z (€. €5)0U): Ja(3)
example (e,f) sum the expected
counts of this translation . telf) Z : o
(el f;e,f) = 5(e,e;) Y (S fi)

| | J
Zz’:()f(()‘fz‘) i=1 i—0
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EM for IBM Model 1 - Maximization Step

la maison
* We want to collect alignment counts 0.059

to compute the new translation p(thefla) = 0.7 p(housel[la) = 0.05
parameters, using the current

—> 0.875 0.941

p(the/maison) = 0.1 p(house/maison) = 0.8

0.125
translation parameters L the house
e, f) (ale, ) e,e:)0(f, i
* For each possible pair (e,f) in each (el/: Z[ ‘ Z (€, €3)0U) Ja(3)
example (e,f) sum the expected ] 5
counts of this translation . t(elf) ~ I
cle|fie f) = ¥ | . Z()(().({,-)ZO(,]‘.]‘,-)
> imotlelfi) =1 i=0
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EM for IBM Model 1 - Maximization Step

la maison
* We want to collect alignment counts 0.059

. the|la) = 0.7 p(house|la) = 0.05
to compute the new translation p(thella) =0. v {’( ouse|‘a) = 0.4 ) — osr: 0.941
¢ o the current = 0.1 p(house/maison) = 0.8
parameters, using /e
translation parameters the house

p(the|ms: uson)

f) f) e.e:)o(f.f.i
* For each possible pair (e,f) in each clfe. ZP le; Z (€. €5)0U): Ja(3)
example (e,f) sum the expected
counts of this translation . telf) z : D
(el f;e,f) = 5(e,e;) Y (S fi)

. J
e Maximization: after we do this over 2.i=o Helfi) j=1 ’
the entire corpus, sum and normalize
" P | Ethgf ( «f €, f))
0 get the new parameters tle|fie, f) =
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EM for IBM Model 1 - Pseudo Code

o Finally:

Input: set of sentence pairs (e, f)
Output: translation prob. t(e|f)
1: initialize t(e|f) uniformly
2: while not converged do

3:

o o N o m

10:
11:
12:
13:

// initialize
count(e|f) = 0 for all e, f
total(f) = 0 for all f
for all sentence pairs (e,f) do
// compute normalization
for all words ¢ in e do
s-total(e) = 0
for all words f in f do
s-total(e) += t(e|f)
end for
end for

14:
15:
16:
17:

18:
19:
20:
21:
22:
23:
24

25:

20:
27:

// collect counts
for all words e in e do
for all words f in f do

count(e|f) += —=l/)

s-total(e)
t(elf)
total(f) += s-totelﬂ(e)
end for
end for
end for

/| estimate probabilities
for all foreign words f do
for all English words e do
telf) = ety
end for
end for

28: end while
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EM for IBM Model 1 - Pseudo Code

Input: set of sentence pairs (e, f)
Output: translation prob. t(e|f)
1: initialize t(e|f) uniformly
2: while not converged do
. Fina”y; 3:  // initialize
count(e|f) = 0 for all e, f
total(f) = 0 for all f

4
: 5
* You will 6:  for all sentence pairs (e,f) do

implement this 7 // compute normalization

in Exercise 1 8 for all words e in e do
9 s-total(e) = 0
10: for all words f in f do
11: s-total(e) += t(e|f)
12: end for
13: end for

14: // collect counts
15: for all words e in e do
16: for all words f in f do
: _ _tlelf)
17: count(e|f) += ~total(e)
__t(elf)
13: tOtal(f) = s-total(e)
19: end for
20: end for

21: end for

22: |/ estimate probabilities
23:  for all foreign words f do

24; for all English words e do
i __ count(el|f)

25: f((‘f) ~ Ttotal(f)

26: end for

27 end for
28: end while
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Alignment Error Rate (AER)

e HOW Can we measure . en
the alignment quality? =5 = 178
= Sure »
e AER - Och and Ney, . _ a
ZOOO y O = POSSIbIe enregistré
1,122,000
. — Predlcted () divorces
le
AN S + AN P continent
AER(A,S,P) = |1 | |+ | | n
|A| 4 |S]
g 00 ye) 0
g L
=

- (1-319) -
I b A

Americans
1,122,000
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Alignment Error Rate (AER)

e HOW can we measure n

the alignment quality?

| | = Sure

() = Possible
B = Predicted

 AER - Och and Ney,
2000

e Possible contains Sure

AER(A.S. P) = (1 |AmS\+|AmP|)

Al + |S]

- (1-319) -
I b A

in
1978

Americans

divorced
1,122,000

times

ROEE AHARONI

en
1978

on
-
enregistré
1,122,000
divorces
sur

le

continent



STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

Alignment Error Rate (AER)

e HOw can we measure C en
the alignment quality? =5 = 17
= Sure ,
* AER - Och and Ney, () = Possible . a
— enregistré
2000 1,122,000
. . - = Predicted () divorces
e Possible contains Sure - sur
le
* Must hit all Sure to be AER(A. S, P) = (1 |AﬂSl+|AﬂP|> _ continent
perfect, ok to not o Al 4 |S]

in
1978

Americans
times

cover all probable

divorced
1,122,000

- (1-313) -
I b A
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Summary

e |IBM model 1

e Generative model, based on:


https://docs.google.com/document/d/16NOAMZ836C-AecSH8FWH-v6iDoELGFPXs8kJeRpzQcU/edit#

Summary

French: Je yaud-r-ai-s gssqy-gr un costume que j’ai y-y dans un magasin en face
e |IBM model 1

nearly
. arallel
e Generative model, based on: poiymmes /
morphemes
andlzzoncepts /
o Alignments (latent variables) —
nglish: |

[’d like to try on a suit I've see-n in a' shop across the street fron
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Summary

French: Je M,{, -ai un costume que j’ai y-y dans un magasin en face
e IBM model 1 i 17 T
nearly ',//
. llel
e Generative model, based on: o //
morphemes /}/
and concepts ////\
//
o Alignments (latent variables) /
English: [’d like to try on a suit I've see-n in a'shop across the street

e Which are used to calculate translation parameters


https://docs.google.com/document/d/16NOAMZ836C-AecSH8FWH-v6iDoELGFPXs8kJeRpzQcU/edit#

Summary

e |IBM model 1

nearly
parallel

e Generative model, based on: R

French: Je 4 5 s essay-er un costume que j’ai Y-y dans un magasin en face
morphemes |

/ A
and concepts | ||

o Alignments (latent variables) //M

English: 'd like to try on a suit I've see-n in a shop across the street

e Which are used to calculate translation parameters

o Using Expectation Maximization


https://docs.google.com/document/d/16NOAMZ836C-AecSH8FWH-v6iDoELGFPXs8kJeRpzQcU/edit#

Summary

French: Je -5 essqy-er un costume que j 'ai Y-y dans un magasin en face
e |BM model 1 -

> to try on a suit I've see-n in a' shop across the street

nearly |

' arallel //
e Generative model, based on: s /)

order of [/
morphemes ';
and concepts \

o Alignments (latent variables) Ll ‘

English:

Which are used to calculate translation parameters
o Using Expectation Maximization

e Exercise 1 - May 18th



https://docs.google.com/document/d/16NOAMZ836C-AecSH8FWH-v6iDoELGFPXs8kJeRpzQcU/edit#

Summary

French: Je yaud-r-ai-s gssqy-er un costume que j’ai y-y dans un magasin enfacede no
e |IBM model 1

{ {.
e Generative model, based on: oy
o, / // M
* Alignments (latent variables) i

['d like to try on a suit I've see-n in a'shop across the street |

e Which are used to calculate translation parameters
Turkish: Otel-in kaisz -sin-da-ki Jiikkan-da gor- dug mbu elbise-yj dene- mgk\/m -r-im.

o Using Expectation Maximization

inverse

order of
morphemes

e Exercise 1 - May 18th and concepts

- /7 \ . , : ;
English; I'd like to try on a suit I've see-n in a shop across the street from our hotel.


https://docs.google.com/document/d/16NOAMZ836C-AecSH8FWH-v6iDoELGFPXs8kJeRpzQcU/edit#

Questions ?

Questions diverses ?



