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• How?
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Why probability?
• Formalizes…

• The concept of models

• The concept of data

• The concept of learning

• The concept of inference (prediction)

• Enables to model ambiguity
Al-Khalil ibn Ahmad al-Farahidi, 718-786 
Image: Wikipedia
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Understanding Alignments

• Alignment function

• Reordering

• One-to-Many

• Dropping words

• Inserting words
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• f - foreign sentence (Chinese)

• a - alignment

• e - English sentence

• I - foreign sentence length

• J - English sentence length

• a_i - alignment of i-th foreign word 

• f_i - foreign word in position i

• e_{a_i} - English word in position a_i

sample  
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length

sample  
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sample  
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translation
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How can we learn this from data?

• If we know the alignments, easy:

• p(I|J) - learn by counting

• Alignment distributions - use 
uniform distribution

• Word translation distributions - 
again by counting

• But do we know the alignments?

# Aligned Chinese sentences of length I

# English sentences of length J
p(I|J) =

p(a_i|J) =
1

J+1

p(however|然⽽而) =
# times “然⽽而” aligned to “however”

# times “然⽽而” aligned to any word
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The Expectation-Maximization (EM) Algorithm

• Dempster, Laird and Rubin (1977)

• One of the most widely used algorithms in 
machine learning

• Many applications, e.g. clustering

• Main idea - start randomly, and iterate until 
convergence: 

• Calculate expected counts for missing data 
(expectation, or E-step) using current model

• Find new model parameters that maximize 
the data likelihood (maximization, or M-step)
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EM for IBM Model1 - Overview
• Start with all alignments equally likely

• In each iteration:

• look at the entire dataset and sum the 
(expected) alignments we saw for each word 
and it’s possible translations (E-step)

• Update the translation probabilities according 
to those global counts (M-step)… 

• …which will update the alignment counts

• Repeat steps above

• Until convergence
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EM for IBM Model1 - Computation

• We need to compute:

• Expectation step: probability of 
alignments

• Maximization step: probability of 
word translations 
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EM for IBM Model 1 - Expectation Step

• Apply the chain rule

• Numerator - IBM Model 1 definition

• Denominator:

• Marginalize over all possible 
alignments

• IBM model 1 definition



STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

EM for IBM Model 1 - Expectation Step



STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

EM for IBM Model 1 - Expectation Step

• We want to get rid of the 
exponential number of 
multiplications



STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

EM for IBM Model 1 - Expectation Step

• We want to get rid of the 
exponential number of 
multiplications

• Move the constants out



STATISTICAL MACHINE TRANSLATION 2020 ROEE AHARONI

EM for IBM Model 1 - Expectation Step

• We want to get rid of the 
exponential number of 
multiplications

• Move the constants out

• Last trick - change sum of products 
to product of sums
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EM for IBM Model 1 - Expectation Step

• So finally we got:

• Probability of alignment given a 
sentence pair

• Based on the translation 
probabilities alone

• We will use this to get the 
expected alignment counts
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EM for IBM Model 1 - Maximization Step
• We want to collect alignment counts 

to compute the new translation 
parameters, using the current 
translation parameters

• For each possible pair (e,f) in each 
example (e,f) sum the expected 
counts of this translation 

• Maximization: after we do this over 
the entire corpus, sum and normalize 
to get the new parameters

0.875 0.941

0.125

0.059
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EM for IBM Model 1 - Pseudo Code

• Finally:

• You will 
implement this 
in Exercise 1
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Alignment Error Rate (AER)
• How can we measure 

the alignment quality?

• AER - Och and Ney, 
2000

• Possible contains Sure

• Must hit all Sure to be 
perfect, ok to not 
cover all probable
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