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Handling Large Vocabularies

+ Natural language is diverse

- We need to cover both common
words and rare words
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Handling Large Vocabularies

Zipf's law
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unknown words
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Handling Large Vocabularies

Zipf's law

+ Natural language is diverse

- We need to cover both common
words and rare words

+ Using a small vocabulary (top k
words) - low coverage, many
unknown words
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- Unknown words are inevitable - new
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How do we handle “unknown” words?

- Unknown words are inevitable - new
words are always invented around us:

+ We can't use an inifinite vocabulary...

+ “UNK" token - replace each unknown
word with an “UNK" symbol

+ Good: Enables to encode any sentence
+ Bad: Throws away information...

- How can we do better?
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Character Level MT

Highway Layer

+ An simple solution - work at the character level: Highway Layers
 No unknown words! Models morphology Max output of
each filter
*Very long sequences - slow...
Multiple
+ How do we model this? convolution
filters of different
lenghts

- Ling et al. 2015 - Char2Vec and Vec2Char with
LSTMS

- Costa Jussa et al 2016 - using word-|evel Sequence of
character

convolutions (faster) embeddings
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Figure 1: Character-based word embedding
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» An simple solution - work at the character level:
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Character Level MT

» An simple solution - work at the character level:
 No unknown words! Models morphology RNX(T/5)
*Very long sequences - slow...

 How do we model this? RVX(T/5)

- Ling et al. 2015 - Char2Vec and Vec2Char with
LSTMSs RV¥T

+ Costa Jussa et al 2016 - using word-level
convolutions (faster)

 Chung et al. 2016, Lee et al. 2016 - No need for R
word segmentation!

 Requires deep models to work well (Cherry et al 2018)
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Character
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Seg2Seq with a Copy Mechanism

+ Another solution for unknown words:
“copy” them “as-is" from source

French:

English:

Gulllaume

et

Copy

Guillaume

and

Cesar

\Copy

ont une voiture bleue a

Cesar| have a blue car in



https://arxiv.org/pdf/1603.08148.pdf
https://www.aclweb.org/anthology/P16-1154.pdf
https://www.aclweb.org/anthology/P16-1154.pdf
https://www.aclweb.org/anthology/P17-1099.pdf

Seg2Seq with a Copy Mechanism

+ Another solution for unknown words:
“copy” them “as-is" from source

+ "Pointing the Unknown Words” (Gulchere
et al 2016)

French:

English:

Gulllaume

et

Copy

Guillaume

and

Cesar

'\Copy

ont une voiture bleue a

Cesar| have a blue car in



https://arxiv.org/pdf/1603.08148.pdf
https://www.aclweb.org/anthology/P16-1154.pdf
https://www.aclweb.org/anthology/P16-1154.pdf
https://www.aclweb.org/anthology/P17-1099.pdf

Seg2Seq with a Copy Mechanism
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Seg2Seq with a Copy Mechanism

Another solution for unknown words:
“copy” them “as-is" from source

"Pointing the Unknown Words"” (Gulchere
et al 2016)

Interpolate the attention distribution and
the softmax distribution

Useful in summarization tasks (Gu et al
2016, See et al. 2017)

French: Guillaume let |Cesar|ont une voiture bleue a
Copy KFODY
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Seg2Seq with a Copy Mechanism

Another solution for unknown words:
“copy” them “as-is" from source

"Pointing the Unknown Words"” (Gulchere
et al 2016)

Interpolate the attention distribution and
the softmax distribution

Useful in summarization tasks (Gu et al
2016, See et al. 2017)

Problem - can't copy in all cases

French: Guillaume let |Cesar|ont une voiture bleue a
Copy KFODY
English: Guillaumeland[Cesar] have a blue car in
Final Distribution
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Context Vector
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Partial Summary
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A practical middle ground: BPE

- “Neural Machine Translation of Rare Words with
Subword Units” Sennrich et al, 2015
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A practical middle ground: BPE

- “Neural Machine Translation of Rare Words with
Subword Units” Sennrich et al, 2015

+ Uses the “Byte-Pair Encoding” compression
algorithm (Gage, 1994):

import re, collections

def get stats(vocab):
palrs = collections.defaultdict(int)
for word, freqg in vocab.items():
symbols = word.split()
for 1 in range(len(symbols)-1):
pairs[symbols[1i],symbols[i+l]] += freqg
return pairs

def merge vocab(pair, v 1in):

v out =_{} a

bigram = re.escape(' '.join(pair))

p = re.compile(r' (?<!\S)' + bigram + r'(?2!\S)")

for word in v in:
w out = p.sub(''.join(pair), word)
v:out[w_out] = v 1n[word]

return v out

vocab = ('l o w </w>"'" : 5, "1 ower</w>': 2,
'"newe st </w>':6, 'widest</w>':3}
num merges = 10
for i1 in range (num merges):
palirs = get_statg(vocab)
best = max(pairs, key=pairs.get)
vocab = merge vocab(best, vocab)

print (best)
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A practical middle ground: BPE

import re, collections
- “Neural Machine Translation of Rare Words with

Subword Units” Sennrich et al, 2015

def get stats(vocab):

palrs = collections.defaultdict(int)
for word, freqg in vocab.items():
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return pairs
+ Start bottom up from characters as symbols
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palrs = collections.defaultdict(int)
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return pairs
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for word, freqg in vocab.items () :
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algorithm (Gage, 1994):
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+ Pick the most common symbol pair

. for word in v in:
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A practical middle ground: BPE

- “Neural Machine Translation of Rare Words with

Subword Units” Sennrich et al, 2015

+ Uses the “Byte-Pair Encoding” compression
algorithm (Gage, 1994):

+ Start bottom up from characters as symbols
+ Pick the most common symbol pair
+ Merge it to a new symbol

+ Repeat until the desired vocal size

» The current standard for word segmentation in NLP

applications (1900+ citations)

import re, collections

def get stats(vocab):

palirs = collections.defaultdict(int)
for word, freqg in vocab.items () :

symbols = word.split()

This is a shot of C@@ ann@@ ery R@@ ow in 19@@ 32 .

. 32 @@19-2111 "N @@IN @@p DY mbwx Nt

>
—

for word in v in:
w out = p.sub(''.join(pair), word)
v _out[w out] = v in[word]

return v out

vocab = {'l o w </w>"'" : 5, "1 ower</w>'_: 2,

'"newes ¢t </w>':6, 'widest </w>':3}

num merges = 10
for i in range (num merges) :

pairs = get stats(vocab)
best = max(pairs, key=pairs.get)
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A practical middle ground: BPE

import re, collections
- “Neural Machine Translation of Rare Words with
def get stats(vocab):

Subword Units” Sennrich et al, 2015 pairs = collections.defaultdict (int)
for word, freqg in vocab.items () :
symbols = word.split()

+ Uses the “Byte-Pair Encoding” compression
algorithm (Gage, 1994):

This is a shot of C@@ ann@@ ery R@@ ow in 19@@ 32 .

+ Start bottom up from characters as symbols

| | . 32 @@19-2111 "X @@IX @@ YWY Md ¥ NT
+ Pick the most common symbol pair

for word in v _in:

* Merge it to a new symbol w out = p.sub(''.join (pair), word)
v _out[w out] = v in[word]
+ Repeat until the desired vocal size ERERER W_Ous

vocab = {'l o w </w>"'" : 5, "1 ower</w>'_: 2,
'"newes ¢t </w>':6, 'widest </w>':3}

num merges = 10

» The current standard for word segmentation in NLP
applications (1900+ citations) for i in range (num merges):
pairs = get_statg(vocab)
best = max(pairs, key=pairs.get)

» Controllable vocabulary size, no UNKs!
vocab = merge vocab(best, wvocab) «
print (best)
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+ SMT is better in low resource
settings

+ Especially with a LM
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+ The driving force of todays state-of-the-art systems Understanding Sack-Iransiation at Scale
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Sergey Edunov™ Myle Ott™ Michael Auli® David Grangier V"
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Transfer Learning

Back-Translation gives nice improvements, but
monolingual data is not as good as parallel data

Can we use parallel data from other language
pairs?

“Transfer Learning for Low-Resource Neural
Machine Translation”, Zoph et al. (2016)

ldea - Train a high-resource “parent” model
(French-English) and fine-tune it for a low-
resource “child” pair (Uzbek-English)

Language Pair Parent Train Size BLEU T | PPL |
. None 1.8m 10.7 22.4
Uzbek— g ol Fnglish [.8m | 15.0 (+4.3) | 139
None 1.8m 13.3 28.2

I - !
T g ol FinoTish [.8m | 20.0 (+6.7) | 10.9
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Transfer Learning

- Back-Translation gives nice improvements, but
, , Language Pair Parent Train Size BLEU T | PPL |
monolingual data is not as good as parallel data T None  8m 071 224
Vzhek-tngeh | ench-Enghish [.8m | 15.0 (+4.3) | 139
+ Can we use parallel data from other language BoomciY=Baglieh None | | 8m 133 282
pa irs? French—English 1.8m | 20.0 (+6.7) 10.9
* “Transfer Learning for Low-Resource Neural
: : 7 Source Source | Target : Target Input | Target Output Dev Dev
Machine Translation”, Zoph et al. (2016) Embeddings | RNN | RNN | At€ntion | b idines | Embeddings || BLEw + | PPL |
[~ & & [~ a & 0.0 | 112.6
+ ldea - Train a high-resource “parent” model o a a a a a 77| 247
. : . s o & & a a 118 | 17.0
(French-English) and fine-tune it for a low- e e e o a o 43 | 145
PRRTETRRTTR ) : o’ o’ " " a a 150 | 13.9
resource “child” pair (Uzbek-English) = = = = = =
o iy o o s o 13.7 | 14.4

* Freezing some parts of the network helps -
avoids “catastrophic forgetting”

Table 7: Starting with the parent French-English model (BLEU =24 4, PPL=6.2), we randomly assign Uzbek word types to French
word embeddings, freeze various parameters of the neural network model (@), and allow Uzbek-English (child model) training
to modify other parts (of"). The table shows how Uzbek-English BLEU and perplexity vary as we allow more parameters to be

re-trained.
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+ One approach: separate encoder/
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less parameter sharing for
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(1 A N R A

<2he> the cat sat on the mat </s>

+ Use a special language token to

ContrOl the targEt |anguage le chat assis sur le tapis </s>

rt 1t 1
* Pros - Full parameter sharing, no SRR R PR P PR R PR
architecture changes (T A A I

<2fr> the cat sat on the mat </s>

+ Con - languages may “interfere”
each other
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+ Most works until 2018 -up to 5
languages, 20 translation
directions (one outlier)

= # of languages = # of trained directions
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Massively Multilingual NMT

+ Most works until 2018 - u P to 5 Massively Multilingual Neural Machine Translation
la nguages’ 20 tra nSlatIOn Roee Aharoni” Melvin Johnson and Orhan Firat
‘ . . Bar Ilan University Google Al
directions (one outlier) Ramat-Gan Mountain View
Israel California
roee.aharonidgmail.com melvinp,orhanfl@google.com

 Why stop here?

® # of languages ® # of trained directions 58 57
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2016 A 2016 B al. 2016 2016 2016 2017 2017 2018 al. 2018 2018 2018 2018



Massively Multilingual NMT



Masswely Multilingual NMT

experiments: The TED talks dataset



Massively Multilingual NMT

5109

* Low resource experiments: The TED talks dataset TED

TED's Open Translation Project brings
suptities In 40+ languages to TED.com




Massively Multilingual NMT

5109

* Low resource experiments: The TED talks dataset TED

+ 58 languages, to and from English

TED's Open Translation Project brings
suptities In 40+ languages to TED.com




Massively Multlllngual NMT

+ Low resource experiments: The TED talks dataset

+ 58 languages, to and from English

+ 3k-214k training examples per language - imbalanced

5109

—D's Open Translation Project

Ubtitles In 40+ languages to I

prings

—D.com




Massively Multlllngual NMT

+ Low resource experiments: The TED talks dataset

+ 58 languages, to and from English
+ 3k-214k training examples per language - imbalanced

+ 258k original sentences in train set = mostly multi-way parallel

5109

S

=

—D's Open Translation Project

Ubtitles In 40+ languages to I

prings

—D.com




Massively Multlllngual NMT

+ Low resource experiments: The TED talks dataset

+ 58 languages, to and from English
+ 3k-214k training examples per language - imbalanced
+ 258k original sentences in train set = mostly multi-way parallel

+ Transformer-Base models, similar capacity (93M parameters)

5109

S

=

—D's Open Translation Project

Ubtitles In 40+ languages to I

prings

—D.com




Massively Multlllngual NMT

+ Low resource experiments: The TED talks dataset

+ 58 languages, to and from English

+ 3k-214k training examples per language - imbalanced

+ 258k original sentences in train set = mostly multi-way parallel
+ Transformer-Base models, similar capacity (93M parameters)

» Shared wordpiece vocabulary, 32k symbols

5109

S

=

—D's Open Translation Project

Ubtitles In 40+ languages to I

prings

—D.com




Massively Multlllngual NMT

+ Low resource experiments: The TED talks dataset

+ 58 languages, to and from English

+ 3k-214k training examples per language - imbalanced

+ 258k original sentences in train set = mostly multi-way parallel
+ Transformer-Base models, similar capacity (93M parameters)

» Shared wordpiece vocabulary, 32k symbols

 Many-to-Many (English-Centric), Many-to-One, One-to-Many, One-to-One

5109

S

=

—D's Open Translation Project

Ubtitles In 40+ languages to I

prings

—D.com




Massively Multlllngual NMT

+ Low resource experiments: The TED talks dataset

+ 58 languages, to and from English

+ 3k-214k training examples per language - imbalanced

+ 258k original sentences in train set = mostly multi-way parallel
+ Transformer-Base models, similar capacity (93M parameters)

» Shared wordpiece vocabulary, 32k symbols
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Massively Multilingual NMT

+ Low resource experiments: The TED talks dataset

TEDSI00

+ 58 languages, to and from English

+ 3k-214k training examples per language - imbalanced

+ 258k original sentences in train set = mostly multi-way parallel
» Transformer-Base models, similar capacity (93M parameters)

» Shared wordpiece vocabulary, 32k symbols

+ Many-to-Many (English-Centric), Many-to-One, One-to-Many, One-to-One

+ Joint Multilingual models

2, 2 2 2 o o 2, 2 2 2 2 o o 2 2, 2 2 2 oy o o e
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-
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Az-En Be-En GI-En Sk-En | Avg.
- : . # of examples 59k 45k 10k 61k 20.3k
+ Multilingual models significantly Neubig & Hu 18
: baselines 2.7 2.8 16.2 24 11.42
outperform baselines many-to-one | 11.7 183 29.1 283 |21.85
Ours
. A fN A many-to-one 11.24 18.28 28.63 26.78 |21.23
Many-to-Many models outperform fine many-to-many | 12.78 21.73 30.65 29.54 | 23.67
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Massively Multilingual NMT

Multilingual models significantly
outperform baselines

Many-to-Many models outperform fine-
tuned Many-to-One models

Similar result in language pairs with
more data (baselines stronger here)

Why? many-to-many is “harder”

Az-En Be-En GI-En Sk-En | Avg.
# of examples 59k 45k 10k 61k 20.3k
Neubig & Hu 18
baselines 2.7 2.8 16.2 24 11.42
many-to-one 11.7 183 29.1 283 | 21.85
Ours
many-to-one 11.24 18.28 28.63 26.78 | 21.23
many-to-many | 12.78 21.73 30.65 29.54 | 23.67
Ar-En De-En He-En It-En | Avg.
#of examples | 213k 167k 211k 203k | 198.5k
baselines 27.84 30.5 34.37 33.64 | 31.59
many-to-one | 25.93 28.87 30.19 3242 | 29.35
many-to-many | 28.32 3297 33.18 35.14 | 324
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Multilinguality as Regularization

many-to-one dev many-to-one train

— many-to-many dev - = many-to-many train

+ The models we used are very large -
prone to overfitting on the small
datasets

- Having many target languages makes
it harder to memorize, even with
small data

BLEU

+ Also easy to memorize since multi- |
Way pa ra”el 0 50000 100000
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+ One-to-Many outperform
Many-to-Many and baselines

En-Az En-Be En-Gl En-Sk | Avg.
#of examples | 5.9k 4.5k 10k 61k 20.3k
baselines 2.16 247 326 5.8 3.42
one-to-many | 5.06 10,72 26.59 2452 | 16.72
many-to-many | 3.9 7.24 23778 21.83 | 14.19

En-Ar En-De En-He En-It | Avg.
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Evaluating out of English

+ One-to-Many outperform
Many-to-Many and baselines

+ Many-to-Many models are
biased towards English in the
target

En-Az En-Be En-Gl En-Sk | Avg.
#of examples | 5.9k 45k 10k 6lk | 203k
baselines 2.16 247 326 58 |342
one-to-many | 5.06 10,72 26.59 2452 | 16.72
many-to-many | 3.9 124 23,778 21.83 | 14.19

En-Ar En-De En-He En-It | Avg.
#of examples | 213k 167k 211k 203k | 198.5k
baselines 1295 2331 23.66 3033 | 22.56
one-to-many | 16.67 30.54 27.62 35.89 | 27.68
many-to-many | 14.25 27.95 24.16 33.26 | 249




Evaluating out of English

+ One-to-Many outperform
Many-to-Many and baselines

+ Many-to-Many models are
biased towards English in the
target

+ When English memorization is
not an issue, better to train on
fewer directions

En-Az En-Be En-Gl En-Sk | Avg.
#of examples | 5.9k 4.5k 10k 6lk | 20.3k
baselines 2.16 247 326 58 | 342
one-to-many |35.06 10.72 2659 2452 | 16.72
many-to-many | 3.9 7.24 2378 21.83 | 14.19

En-Ar En-De En-He En-It | Avg.
#of examples | 213k 167k 211k 203k | 198.5k
baselines 1295 23.31 23.66 30.33 | 22.56
one-to-many | 16.67 30.54 27.62 35.89 | 27.68
many-to-many | 14.25 2795 24.16 33.26 | 249
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Experiments - High Resource

- We saw that:

+ Massively multilingual many-to-many models win when
going into-English (reduce memorization)

+ One-to-many models are better when going out of English
(not biased to English)

+ Does this hold:
- With even more languages?

- With larger, balanced, “real-world” datasets?
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Experiments - High Resource

+ Transformer Big(ger) models

+ 473.7M parameters (vs. 213M in Big)

+ Joint subword vocabulary with 64k symbols (24k unique characters)
+ In-house dataset

+ English-Centric: 102 Languages to/from English (mirrored)

+ ~1M examples per language pair (balanced)

+ Not multi-way parallel
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Results - Into English

Ar Az Be De He It NI Ro Sk Ir Avg

baselines 23.34 163 2193 30.18 31.83 3647 36.12 3459 24.01 27.13 | 28.19

many-to-one | 26.04 23.68 2536 35.05 33.61 35.69 36.28 36.33 28.35 29.75 | 31.01
many-to-many | 22.17 21.45 23.03 37.06 30.71 350 36.18 36.57 29.87 27.64 | 29.97

Many-to-one model outperforms baselines and Many-to-Many

+ When the data is large enough and not multi-way-parallel,
memorization is not an issue and “less is more”

German and ltalian outliers - due to interference

Many-to-one reached 38 BLEU when evaluated using German only dev-
set, but degraded
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Results - Out of English

Ar Az Be De He

baselines 1 10.57 8.07 153 23.24 19.47
one-to-many 12.08 992 15.6 31.39 20.01
many-to-many | 10.57 984 14.3 28.48 1791

It
31.42
33
30.39

NI

28.68
31.06
29.67

Ro Sk Tr

27.92 11.08 15.54
28.43 17.67 17.68
26.23 18.15 15.58

Avg.

19.13
21.68
20.11

+ Clear advantage to the one-to-many model in all cases

+ Up to 6-8 BLEU improvement over baseline (Slovak,

German)

+ Less burden, not biased towards English
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Analysis

+ The previous experiments present an extreme case (100+
languages in a single model)

+ What is the trade-off between the number of languages
and model performance?

+ Both supervised and Zero-Shot

- Keep model fixed, measure performance on 5 languages
while varying the number of additional languages
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50-t0-50 23.7 11.65 37.81 3583 2922 2195 26.02 1532 | 25.18
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Analysis - Supervised Directions

Ar-En En-Ar Fr-En En-Fr Ru-En En-Ru Uk-En En-Uk | Avg.
5-10-3 23.87 1242 3899 373 2907 2486 26.17 1648 | 26.14
25-10-25 2343 11.77 38.87 36.79 2936 2324 2581 17.17 | 25.8
50-t0-50 23.7 11.65 37.81 3583 2922 2195 26.02 1532 | 25.18
75-10-75 22.23 10.69 3797 3435 2855 20.7 25.89 1459 | 24.37
103-t0-103 | 21.16 10.25 3591 3442 2725 199 2453 1389 | 2341

+ Clear trade-off between number of languages and model accuracy

+ Maybe we need even bigger models? TM examples per language
pair is not very large... (in MT scale)
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Ar-Fr  Fr-Ar Ru-Uk Uk-Ru | Avg.

5-to-5 1.66 449 3.7 3.02 3.21

. 25-t0-25 1.83 552 16,67 4.31 7.08

« 50-to-50 strikes a gOOd balance 50-t0-50 | 434 472 1514 2023 | 11.1
75-to-75 1.85 426 112 15.88 | 8.3
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+ 50-to-50 strikes a good balance
between capacity and
generalization

- Similar languages are much easier
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Analysis - Zero-Shot Directions

+ 50-to-50 strikes a good balance
between capacity and
generalization

- Similar languages are much easier

+ General trend - more languages,
more generalization (interlingua?)

Ar-Fr  Fr-Ar Ru-Uk Uk-Ru | Avg.
5-to-5 1.66 4.49 3.7 3.02 3.21
25-t0-25 1.83 5.52 16.67 4.31 7.08
50-to-50 4.34 4.72 15.14 20.23 11.1
75-t0-75 1.85 4.26 11.2 15.88 8.3
103-to-103 | 2.87 3.05 12.3 18.49 9.17

o o = 103-to-103
=

update
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+ Kudugunta et al. 2019 investigated the | g " .
representations learned by massively ased .
multilingual models |

e Al B )
.l.,.—.»: o “hu . P o’
.r~r .al ”’ | Jral
. “ Celtic
- o ® " ‘.':" » \::;j;'l K fun‘;;n
Germanic ' '&f”.’;’» " g

Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity.
Languages are color-coded by their linguistic family. Best viewed in color.
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Languages are color-coded by their linguistic family. Best viewed in color.



Summary

e NMT is a strong tool, but needs some tweaks to work well
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Figure 2: Visualizing clustering of the encoder representations of all languages, based on their SVCCA similarity.
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